

ALGORITHMS +
DATA STRUCTURES =
PROGRAMS

NIKLAUS WIRTH

Eidgenossische Technische Hochschule
Zurich, Switzerland

PRENTICE-HALL, INC.

ENGLEWOOD CLIFFS, N.J.

Library of Congress Cataloging in Publication Data

WIRTH, NIKLAUS.
Algorithms + data structures = programs.
Bibliography: p.
Includes index.
1. Electronic digital computers—Programming.
2. Data structures (Computer science) 3. Algorithms.
1. Title.
QA76.6.W56 001.6'42 75-11599
ISBN 0-13-022418-9

© 1976
by PRENTICE-HALL, INC.
Englewood Cliffs, New Jersey

All rights reserved. No part of this
book may be reproduced in any form
or by any means without permission
in writing from the publisher.

109 8

Printed in the United States of America

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA, PTY., LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA (PTE.) LTD., Singapore

To Nani

CONTENTS

PREFACE x

DECLARATION xv

l FUNDAMENTAL DATA STRUCTURES 1

1.1 Introduction 1
1.2 The Concept of Data Type 4
1.3 Primitive Data Types 6
1.4 Standard Primitive Types 8
1.5 Subrange Types 10
1.6 The Array Structure 11
1.7 The Record Structure 16
1.8 Variants of Record Structures 20
1.9 The Set Structure 23
1.10 Representation of Array, Record, and Set Structures 29

1.10.1 Representation of Arrays 30
1.10.2 Representation of Record Structures 32
1.10.3 Representation of Sets 33

1.11 The Sequential File Structure 34

1.11.1 Elementary File Operators 37
1.11.2 Files with Substructure 39
1.11.3 Texts 41

1.11.4 A File Editing Program 49

ix

CONTENTS

SORTING 56

2.1 Introduction 56
2.2 Sorting Arrays 59

2.2.1 Sorting by Straight Insertion 60

2.2.2 Sorting by Straight Selection 63

2.2.3 Sorting by Straight Exchange 65

2.2.4 Insertion Sort by Diminishing Increment 68
2.2.5 Tree Sort 70

2.2.6 Partition Sort 76

2.2.7 Finding the Median 82

2.2.8 A Comparison of Array Sorting Methods 84

2.3 Sorting Sequential Files 87

2.3.1 Straight Merging 87

2.3.2 Natural Merging 92

2.3.3 Balanced Multiway Merging 99
2.3.4 Polyphase Sort 104

2.3.5 Distribution of Initial Runs 116

RECURSIVE ALGORITHMS 125

3.1 Introduction 125

3.2 When Not to Use Recursion 127

3.3 Two Examples of Recursive Programs 130
3.4 Backtracking Algorithms 137

3.5 The Eight Queens Problem 143

3.6 The Stable Marriage Problem 148

3.7 The Optimal Selection Problem 154

DYNAMIC INFORMATION STRUCTURES 162

4.1 Recursive Data Types 162
4.2 Pointers or References 166
4.3 Linear Lists 171

4.3.1 Basic Operations 171
4.3.2 Ordered Lists and Re-organizing Lists 174
4.3.3 An Application: Topological Sorting 182

4.4 Tree Structures 189

4.4.1 Basic Concepts and Definitions 189
4.4.2 Basic Operations on Binary Trees 198
4.4.3 Tree Search and Insertion 201

4.5

4.6

CONTENTS

4.4.4 Tree Deletion 210
4.4.5 Analysis of Tree Search and Insertion 211
4.4.6 Balanced Trees 215
4.4.7 Balanced Tree Insertion 216
4.4.8 Balanced Tree Deletion 222
4.4.9 Optimal Search Trees 226
4.4.10 Displaying a Tree Structure 232

Multiway Trees 242

4.5.1 B-Trees 245
4.5.2 Binary B-Trees 257

Key Transformations (Hashing) 264

4.6.1 Choice of a Transformation Function 266
4.6.2 Collision Handling 266
4.6.3 Analysis of Key Transformation 271

5 LANGUAGE STRUCTURES AND COMPILERS 280

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
59
5.10
5.11

Language Definition and Structure 280

Sentence Analysis 283

Constructing a Syntax Graph 288

Constructing a Parser for a Given Syntax 291
Constructing a Table-Driven Parsing Program 295
A Translator from BNF into Parser-Driving Data Structures 299
The Programming Language PL/0 307

A Parser for PL/0 311

Recovering from Syntactic Errors 320

A PL/O Processor 331

Code Generation 344

APPENDICES

A THE ASCIl CHARACTER SET 351

B PASCAL SYNTAX DIAGRAMS 352

SUBJECT INDEX 359

INDEX OF PROGRAMS 365

xi

PREFACE

In recent years the subject of computer programming has been recognized
as a discipline whose mastery is fundamental and crucial to the success of
many engineering projects and which is amenable to scientific treatment and
presentation. It has advanced from a craft to an academic discipline. The
initial outstanding contributions toward. this development were made by
E. W. Dijkstra and C. A. R. Hoare. Dijkstra’s “Notes on Structured Pro-
gramming”™ opened a new view of programming as a scientific subject and
an intellectual challenge, and it coined the title for a “revolution” in pro-
gramming. Hoare’s “Axiomatic Basis of Computer Programming”t showed
in a lucid manner that programs are amenable to an exacting analysis based
on mathematical reasoning. Both these papers argue convincingly that many
programming errors can be prevented by making programmers aware of the
methods and techniques which they hitherto applied intuitively and often
unconsciously. These papers focused their attention on the aspects of com-
position and analysis of programs, or, more explicitly, on the structure of
algorithms represented by program texts. Yet, it is abundantly clear that a
systematic and scientific approach to program construction primarily has a
bearing in the case of large, complex programs which involve complicated
sets of data. Hence, a methodology of programming is also bound to include
all aspects of data structuring. Programs, after all, are concrete formulations
of abstract algorithms based on particular representations and structures
of data. An outstanding contribution to bring order into the bewildering
variety of terminology and concepts on data structures was made by Hoare
through his “Notes on Data Structuring.”f It made clear that decisions

*In Structured Programming by Dahl, Djkstra, and Hoare (New York: Academic

Press, 1972), pp. 1-82.
+In Comm. ACM, 12, No. 10 (1969), 576-83.
1In Structured Programming, pp. 83-174

xii

PREFACE Xiii

about structuring data cannot be made without knowledge of the algo-
rithms applied to the data and that, vice versa, the structure and choice
of algorithms often strongly depend on the structure of the underlying data.
In short, the subjects of program composition and data structures are insep-
arably intertwined.

Yet, this book starts with a chapter on data structure for two reasons.
First, one has an intuitive feeling that data precede algorithms: you must
have some objects before you can perform operations on them. Second, and
this is the more immediate reason, this book assumes that the reader is
familiar with the basic notions of computer programming. Traditionally and
sensibly, however, introductory programming courses concentrate on al-
gorithms operating on relatively simple structures of data. Hence, an intro-
ductory chapter on data structures seems appropriate.

Throughout the book, and particularly in Chap. 1, we follow the theory
and terminology expounded by Hoare* and realized in the programming
language PASCAL.T The essence of this theory is that data in the first
instance represent abstractions of real phenomena and are preferably for-
mulated as abstract structures not necessarily realized in common program-
ming languages. In the process of program construction the data represen-
tation is gradually refined—in step with the refinement of the algorithm—
to comply more and more with the constraints imposed by an available pro-
gramming system. We therefore postulate a number of basic building
principles of data structures, called the fundamental structures. It is most
important that they are constructs that are known to be quite easily imple-
mentable on actual computers, for only in this case can they be considered
the true elements of an actual data representation, as the molecules emerging
from the final step of refinements of the data description. They are the record,
the array (with fixed size), and the set. Not surprisingly, these basic building
principles correspond to mathematical notions which are fundamental as
well.

A cornerstone of this theory of data structures is the distinction between
fundamental and “advanced” structures. The former are the molecules—
themselves built out of atoms—which are the components of the latter.
Variables of a fundamental structure change only their value, but never
their structure and never the set of values they can assume. As a consequence,
the size of the store they occupy remains constant. “Advanced” structures,
however, are characterized by their change of value and structure during

*“Notes of Data Structuring.”

+N. Wirth, “The Programming Language Pascal,” Acta Informatica, 1, No. 1 (1971),
35-63.

1N. Wirth, “Program Development by Stepwise Refinement,” Comm. ACM, 14, No. 4
(1971), 221-27.

xiv PREFACE

the execution of a program. More sophisticated techniques are therefore
needed for their implementation.

The sequential file—or simply the sequence—appears as a hybrid in this
classification. It certainly varies its length; but that change in structure is of
a trivial nature. Since the sequential file plays a truly fundamental role in
practically all computer systems, it is included among the fundamental
structures in Chap. 1.

The second chapter treats sorting algorithms. It displays a variety of
different methods, all serving the same purpose. Mathematical analysis of
some of these algorithms shows the advantages and disadvantages of the
methods, and it makes the programmer aware of the importance of analysis
in the choice of good solutions for a given problem. The partitioning into
methods for sorting arrays and methods for sorting files (often called internal
and external sorting) exhibits the crucial influence of data representation on
the choice of applicable algorithms and on their complexity. The space
allocated to sorting would not be so large were it not for the fact that sorting
constitutes an ideal vehicle for illustrating so many principles of program-
ming and situations occurring in most other applications. It often seems
that one could compose an entire programming course by selecting examples
from sorting only.

Another topic that is usually omitted in introductory programming
courses but one that plays an important role in the conception of many
algorithmic solutions is recursion. Therefore, the third chapter is devoted to
recursive algorithms. Recursion is shown to be a generalization of repetition
(iteration), and as such it is an important and powerful concept in program-
ming. In many programming tutorials it is unfortunately exemplified by
cases in which simple iteration would suffice. Instead, Chap. 3 concentrates
on several examples of problems in which recursion allows for a most natural
formulation of a solution, whereas use of iteration would lead to obscure
and cumbersome programs. The class of backtracking algorithms emerges
as an ideal application of recursion, but the most obvious candidates for the
use of recursion are algorithms operating on data whose structure is defined
recursively. These cases are treated in the last two chapters, for which the
third chapter provides a welcome background.

Chapter 4 deals with dynamic data structures, i.e., with data that change
their structure during the execution of the program. It is shown that the
recursive data structures are an important subclass of the dynamic structures
commonly used. Although a recursive definition is both natural and possible
in these cases, it is usually not used in practice. Instead, the mechanism
used in its implementation is made evident to the programmer by forcing
him to use explicit reference or pointer variables. This book follows this
technique and reflects the present state of the art: Chapter 4 is devoted to

PREFACE XV

programming with pointers, to lists, trees, and to examples involving even
more complicated meshes of data. It presents what is often (and somewhat
inappropriately) called “list processing.” A fair amount of space is devoted
to tree organizations, and in particular to search trees. The chapter ends
with a presentation of scatter tables, also called “hash” codes, which are
often preferred to search trees. This provides the possibility of comparing
two fundamentally different techniques for a frequently encountered applica-
tion.

The last chapter consists of a concise introduction to the definition of
Sformal languages and the problem of parsing, and of the construction of a
compiler for a small and simple language for a simple computer. The moti-
vation to include this chapter is threefold. First, the successful programmer
should have at least some insight into the basic problems and techniques of
the compilation process of programming languages. Second, the number of
applications which require the definition of a simple input or control lan-
guage for their convenient operation is steadily growing. Third, formal
languages define a recursive structure upon sequences of symbols; their
processors are therefore excellent examples of the beneficial application of
recursive techniques, which are crucial to obtaining a transparent structure
in an area where programs tend to become large or even enormous. The
choice of the sample language, called PL/0, was a balancing act between a
language that is too trivial to be considered a valid example at all and a
language whose compiler would clearly exceed the size of programs that can
usefully be included in a book that is not directed only to the compiler
specialist.

Programming is a constructive art. How can a constructive, inventive
activity be taught? One method is to crystallize elementary composition
principles out of many cases and exhibit them in a systematic manner. But
programming is a field of vast variety often involving complex intellectual
activities. The belief that it could ever be condensed into a sort of pure
“recipe teaching” is mistaken. What remains in our arsenal of teaching
methods is the careful selection and presentation of master examples.
Naturally, we should not believe that every person is capable of gaining
equally much from the study of examples. It is the characteristic of this
approach that much is left to the student, to his diligence and intuition.
This is particularly true of the relatively involved and long examples of
programs. Their inclusion in this book is not accidental. Longer programs
are the “normal” case in practice, and they are much more suitable for
exhibiting that elusive but essential ingredient called style and orderly
structure. They are also meant to serve as exercises in the art of program
reading, which too often is neglected in favor of program writing. This is a
primary motivation behind the inclusion of larger programs as examples in

XVi PREFACE

their entirety. The reader is led through a gradual development of the
program; he is given various “snapshots” in the evolution of a program,
whereby this development becomes manifest as a stepwise refinement of the
details. I consider it essential that programs are shown in final form with
sufficient attention to details, for in programming, the devil hides in the
details. Although the mere presentation of an algorithm’s principle and its
mathematical analysis may be stimulating and challenging to the academic
mind, it seems dishonest to the engineering practitioner. I have therefore
strictly adhered to the rule of presenting the final programs in a language
in which they can actually be run on a computer.

Of course, this raises the problem of finding a form which at the same
time is both machine executable and sufficiently machine independent to be
included in such a text. In this respect, neither widely used languages nor
abstract notations proved to be adequate. The language PASCAL provides
an appropriate compromise; it had been developed with exactly this aim in
mind, and it is therefore used throughout this book. The programs can
easily be understood by programmers who are familiar with some other
high-level language, such as ALGOL 60 or PL/1, because it is easy to under-
stand the PASCAL notation while proceeding through the text. However,
this not to say that some preparation would not be beneficial. The book
Systematic Programming* provides an ideal background because it is also
based on the PASCAL notation. The present book was, however, not
intended as a manual on the language PASCAL; there exist more appro-
priate texts for this purpose.t

This book is a condensation—and at the same time an elaboration—of
several courses on programming taught at the Federal Institute of Tech-
nology (ETH) at Ziirich. I owe many ideas and views expressed in this book
to discussions with my collaborators at ETH. In particular, I wish to thank
Mr. H. Sandmayr for his careful reading of the manuscript, and Miss Heidi
Theiler for her care and patience in typing the text. I should also like to
mention the stimulating influence provided by meetings of the Working
Groups 2.1 and 2.3 of IFIP, and particularly the many memorable argu-
ments I had on these occasions with E. W. Dijkstra and C. A. R. Hoare.
Last but not least, ETH generously provided the environment and the
computing facilities without which the preparation of this text would have
been impossible.

N. WIRTH

*N. Wirth (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1973.)
+K. Jensen and N. Wirth, “PASCAL—User Manual and Report” Lecture Notes in
Computer Science, Vol. 18 (Berlin, New York; Springer-Verlag, 1974) .

Our lieutenant general, L. Euler, issues, through our good offices, the
following Declaration. He openly confesses:

111.

Iv.

that, although being the king of mathematicians, he will always
blush over his offense against common sense and most ordinary
knowledge, committed by deducing from his formulae that a body
attracted by gravitational forces located at the center of a sphere,
will suddenly reverse its direction at the center;

that he will do his utmost not to let reason be betrayed by a wrong
formula once more. He apologizes on his knees for once having
postulated in view of a paradoxical result: “although it seems to
contradict reality, we must trust our computations more than
our good senses.”

that in the future he will no more compute sixty pages (of output)
for a result, that one can deduce in ten lines after some careful
deliberations; and if he once again pushes up his sleeves in order
to compute for three days and three nights in a row, that he will
spend a quarter of an hour before to think which principles (of
computation) shall be most appropriate.

Excerpt from Voltaire’s “Diatribe du docteur Akakia,”
(November 1752)

XVii

] FUNDAMENTAL DATA
STRUCTURES

1.1. INTRODUCTION

The modern digital computer was invented and intended as a device
that should facilitate and speed up complicated and time-consuming com-
putations. In the majority of applications its capability to store and access
large amounts of information plays the dominant part and is considered to
be its primary characteristic, and its ability to compute, i.e., to calculate,
to perform arithmetic, has in many cases become almost irrelevant.

In all these cases, the large amount of information that is to be processed
in some sense represents an abstraction of a part of the real world. The infor-
mation that is available to the computer consists of a selected set of data
about the real world, namely, that set which is considered relevant to the
problem at hand, that set from which it is believed that the desired results
can be derived. The data represent an abstraction of reality in the sense that
certain properties and characteristics of the real objects are ignored because
they are peripheral and irrelevant to the particular problem. An abstraction
is thereby also a simplification of facts.

We may regard a personnel file of an employer as an example. Every
employee is represented (abstracted) on this file by a set of data relevant
either to the employer or to his accounting procedures. This set may include
some identification of the employee, for example, his name and his salary.
But it will most probably not include irrelevant data such as the color of
hair, weight, and height.

In solving a problem with or without a computer it is necessary to choose
an abstraction of reality, i.e., to define a set of data that is to represent the
real situation. This choice must be guided by the problem to be solved.
Then follows a choice of representation of this information. This choice is

1

2 FUNDAMENTAL DATA STRUCTURES CHAP. 1

guided by the tool that is to solve the problem, i.e., by the facilities offered
by the computer. In most cases these two steps are not entirely independent.

The choice of representation of data is often a fairly difficult one, and it is
not uniquely determined by the facilities available. It must always be taken
in the light of the operations that are to be performed on the data. A good
example is the representation of numbers, which are themselves abstractions
of properties of objects to be characterized. If addition is the only (or at least
the dominant) operation to be performed, then a good way to represent the
number # is to write n strokes. The addition rule on this representation is
indeed very obvious and simple. The Roman numerals are based on the same
principle of simplicity, and the adding rules are similarly straightforward
for small numbers. On the other hand, the representation by Arabic numerals
requires rules that are far from obvious (for small numbers) and they must
be memorized. However, the situation is inverse when we consider either
addition of large numbers or multiplication and division. The decomposition
of these operations into simpler ones is much easier in the case of representa-
tion by Arabic numerals because of its systematic structuring principle that is
based on positional weight of the digits.

It is well-known that computers use an internal representation based
on binary digits (bits). This representation is unsuitable for human beings
because of the usually large number of digits involved, but it is most suitable
for electronic circuits because the two values 0 and 1 can be represented
conveniently and reliably by the presence or absence of electric currents,
electric charge, and magnetic fields.

From this example we can also see that the question of representation
often transcends several levels of detail. Given the problem of representing,
say, the position of an object, the first decision may lead to the choice of a
pair of real numbers in, say, either Cartesian or polar coordinates. The second
decision may lead to a floating-point representation, where every real number
x consists of a pair of integers denoting a fraction f and an exponent e to a
certain base (say, x = f-2°). The third decision, based on the knowledge that
the data are to be stored in a computer, may lead to a binary, positional
representation of integers, and the final decision could be to represent binary
digits by the direction of the magnetic flux in a magnetic storage device.
Evidently, the first decision in this chain is mainly influenced by the problem
situation, and the later ones are progressively dependent on the tool and its
technology. Thus, it can hardly be required that a programmer decide on the
number representation to be employed or even on the storage device charac-
teristics. These “lower-level decisions” can be left to the designers of computer
equipment, who have the most information available on current technology
with which to make a sensible choice that will be acceptable for all (or almost
all) applications where numbers play a role.

In this context, the significance of programming languages becomes appar-

sec. 1.1 INTRODUCTION 3

ent. A programming language represents an abstract computer capable of
understanding the terms used in this language, which may embody a certain
level of abstraction from the objects used by the real machine. Thus, the pro-
grammer who uses such a “higher-level” language will be freed (and barred)
from questions of number representation, if the number is an elementary
object in the realm of this language.

The importance of using a language that offers a convenient set of basic
abstractions common to most problems of data processing lies mainly in the
area of reliability of the resulting programs. It is easier to design a program
based on reasoning with familiar notions of numbers, sets, sequences, and
repetitions than on bits, “words,” and jumps. Of course, an actual computer
will represent all data, whether numbers, sets, or sequences, as a large mass
of bits. But this is irrelevant to the programmer as long as he does not have
to worry about the details of representation of his chosen abstractions and as
long as he can rest assured that the corresponding representation chosen by
the computer (or compiler) is reasonable for his purposes.

The closer the abstractions are to a given computer, the easier it is to make
a representation choice for the engineer or implementor of the language,
and the higher is the probability that a single choice will be suitable for all
(or almost all) conceivable applications. This fact sets definite limits on the
degree of abstractions from a given real computer. For example, it would
not make sense to include geometric objects as basic data items in a general-
purpose language, since their proper representation will, because of its inher-
ent complexity, be largely dependent on the operations to be applied to these
objects. The nature and frequency of these operations will, however, not be
known to the designer of a general-purpose language and its compiler, and
any choice he makes may be inappropriate for some potential applications.

In this book these deliberations determine the choice of notation for the
description of algorithms and their data. Clearly, we wish to use familiar
notions of mathematics, such as numbers, sets, sequences, and so on, rather
than computer-dependent entities such as bitstrings. But equally clearly we
wish to use a notation for which efficient compilers are known to exist.
It is equally unwise to use a closely machine-oriented and machine-dependent
language, as it is unhelpful to describe computer programs in an abstract
notation which leaves problems of representation widely open.

The programming language PASCAL has been designed in an attempt to
find a compromise between these extremes, and it is used throughout this
book [1.3 and 1.5]. This language has been successfully implemented on
several computers, and it has been shown that the notation is sufficiently
close to real machines that the chosen features and their representations can
be clearly explained. The language is also sufficiently close to other languages,
particularly ALGOL 60, that the lessons taught here may equally well be
applied in their use.

4 FUNDAMENTAL DATA STRUCTURES CHAP. 1

1.2. THE CONCEPT OF DATA TYPE

In mathematics it is customary to classify variables according to certain
important characteristics. Clear distinctions are made between real, complex,
and logical variables or between variables representing individual values, or
sets of values, or sets of sets, or between functions, functionals, sets of func-
tions, and so on. This notion of classification is equally important, if not more
important, in data processing. We will adhere to the principle that every
constant, variable, expression, or function is of a certain type. This type essen-
tially characterizes the set of values to which a constant belongs, or which
can be assumed by a variable or expression, or which can be generated by a
function.

In mathematical texts the type of a variable is usually deducible from the
typeface without consideration of context; this is not feasible in computer
programs. For there is usually one typeface commonly available on computer
equipment (i.e., Latin letters). The rule is therefore widely accepted that the
associated type is made explicit in a declaration of the constant, variable, or
function, and that this declaration textually precedes the application of that
constant, variable, or function. This rule is particularly sensible if one con-
siders the fact that a compiler has to make a choice of representation of the
object within the store of a computer. Evidently, the capacity of storage
allocated to a variable will have to be chosen according to the size of the
range of values that the variable may assume. If this information is known
to a compiler, so-called dynamic storage allocation can be avoided. This is
very often the key to an efficient realization of an algorithm.

The primary characteristics of the concept of type that is used throughout
this text, and that is embodied in the programming language PASCAL,
thus are the following [1.2]:

1. A data type determines the set of values to which a constant belongs, or
which may be assumed by a variable or an expression, or which may be
generated by an operator or a function.

2. The type of a value denoted by a constant, variable, or expression may
be derived from its form or its declaration without the necessity of execut-
ing the computational process.

3. Each operator or function expects arguments of a fixed type and yields
a result of a fixed type. If an operator admits arguments of several types
(e.g., + is used for addition of both integers and real numbers), then the
type of the result can be determined from specific language rules.

As a consequence, a compiler may use this information on types to check the
compatibility and legality of various constructs. For example, the assign-
ment of a Boolean (logical) value to an arithmetic (real) variable may be

SEC. 1.2 THE CONCEPT OF DATA TYPE 5

detected without executing the program. This kind of redundancy in the pro-
gram text is extremely useful as an aid in the development of programs, and
it must be considered as the primary advantage of good high-level languages
over machine code (or symbolic assembly code). Evidently, the data will
ultimately be represented by a large number of binary digits, irrespective of
whether or not the program had initially been conceived in a high-level lan-
guage using the concept of type or in a typeless assembly code. To the com-
puter, the store is a homogeneous mass of bits without apparent structure.
But it is exactly this abstract structure which alone is enabling human pro-
grammers to recognize meaning in the monotonous landscape of a computer
store.

The theory presented in this book and the programming language
PASCAL specify certain methods of defining data types. In most cases new
data types are defined in terms of previously defined data types. Values of
such a type are usually conglomerates of component values of the previously
defined constituent types, and they are said to be structured. If there is only
one constituent type, that is, if all components are of the same constituent
type, then it is known as the base type.

The number of distinct values belonging to a type T'is called the cardinality
of T. The cardinality provides a measure for the amount of storage needed
to represent a variable x of the type 7, denoted by x: 7.

Since constituent types may again be structured, entire hierarchies of
structures may be built up, but, obviously, the ultimate components of a
structure must be atomic. Therefore, it is necessary that a notation is provided
to introduce such primitive, unstructured types as well. A straightforward
method is that of enumeration of the values that are to constitute the type.
For example, in a program concerned with plane geometric figures, there
may be introduced a primitive type called shape, whose values may be denoted
by the identifiers rectangle, square, ellipse, circle. But apart from such pro-
grammer defined types, there will have to be some standard types that are
said to be predefined. They will usually include numbers and logical values.
If an ordering exists among the individual values, then the type is said to
be ordered or scalar. In PASCAL, all unstructured types are assumed to be
ordered; in the case of explicit enumeration, the values are assumed to
be ordered by their enumeration sequence.

With this tool in hand, it is possible to define primitive types and to build
conglomerates, structured types up to an arbitrary degree of nesting. In
practice, it is not sufficient to have only one general method of combining
constituent types into a structure. With due regard to practical problems of
representation and use, a general-purpose programming language must offer
several methods of structuring. In a mathematical sense, they may all be
equivalent; they differ in the operators available to construct their values and
to select components of these values. The basic structuring methods presented

6 FUNDAMENTAL DATA STRUCTURES CHAP. 1

here are the array, the record, the set, and the sequence (file). More compli-
cated structures are not usually defined as “‘static” types, but are instead
“dynamically” generated during the execution of the program during which
they may vary in size and shape. Such structures are the subject of Chap. 4
and include lists, rings, trees, and general finite graphs.

Variables and data types are introduced in a program in order to be used
for computation. To this end, a set of operators must be available. As with
data types, programming languages offer a certain number of primitive,
standard (atomic) operators, and a number of structuring methods by which
composite operations can be defined in terms of the primitive operators.
The task of composition of operations is often considered the heart of the
art of programming. However, it will become evident that the appropriate
composition of data is equally fundamental and essential.

The most important basic operators are comparison and assignment,
1.e., the test for equality (and order in the case of ordered types) and the com-
mand to enforce equality. The fundamental difference between these two
operations is emphasized by the clear distinction in their denotation through-
out this text (although it is unfortunately obscured in such widely used
programming languages as Fortran and PL/I, which use the equal sign as
assignment operator).

Test for equality: x =y
Assignment to x: x:=y

These fundamental operators are defined for most data types, but it should be
noted that their execution may involve a substantial amount of computational
effort if the data are large and highly structured.

Apart from test of equality (or order) and assignment, a class of funda-
mental and implicitly defined operators are the so-called transfer operators.
They are mapping data types onto other data types. They are particularly
important in connection with structured types. Structured values are gen-
erated from their component values by so-called constructors, and the com-
ponent values are extracted by so-called selectors. Constructors and selectors
are thus transfer operators mapping constituent types into structured types
and vice versa. Every structuring method owns its particular pair of construc-
tors and selectors that clearly differ in their denotation.

Standard primitive data types also require a set of standard primitive
operators. Thus, along with the standard data types of numbers and logical
values, we also introduce the conventional operations of arithmetic and
propositional logic.

1.3. PRIMITIVE DATA TYPES

In many programs integers are used when numerical properties are not
involved and when the integer represents a choice from a small number of

SEC. 1.3 PRIMITIVE DATA TYPES 7

alternatives. In these cases we introduce a new primitive, unstructured data
type T by enumerating the set of all possible values ¢, ¢, . . . c,.

typeT:(Cl’ CZ""ycn) (l’l)

The cardinality of T is card(T) = n.
EXAMPLES

type shape = (rectangle, square, ellipse, circle)

type color = (red, yellow, green)

type sex = (male, female)

type Boolean = (false, true)

type weekday = (Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday)

type currency = (franc, mark, pound, dollar, shilling, lira, guilder,
krone, ruble, cruzeiro, yen)

type destination = (hell, purgatory, heaven)

type vehicle = (train, bus, automobile, boat, airplane)

type rank = (private, corporal, sergeant, lieutenant, captain, major,

colonel, general)

type object = (constant, type, variable, procedure, function)

type structure = (file, array, record, set)

type condition = (manual, unloaded, parity, skew)

The definition of such types introduces not only a new type identifier, but
at the same time the set of identifiers denoting the values of the new type.
These identifiers may then be used as constants throughout the program, and
they enhance its understandability considerably. If, as an example, we intro-
duce variables s, d, r, and b

var s: sex

var d: weekday

var r: rank

var b: Boolean

then the following assignment statements are possible:
1= male

1= Sunday

i= major

1= true

S~ QAU @

Evidently, they are considerably more informative than their counterparts
s =1 d:=1 r:==6 b:=2

which are based on the assumption that ¢, d, r, and b are defined as type
integer and that the constants are mapped onto the natural numbers in the

8 FUNDAMENTAL DATA STRUCTURES CHAP. 1

order of their enumeration. Furthermore, a compiler can check against the
inconsiderate use of arithmetic operators on such non-numeric types as, for
example,
s:= s+1

If, however, we consider a type as ordered, then it is sensible to introduce
functions that generate the successor and predecessor of their argument.
These functions are denoted by succ(x) and pred(x). The ordering among
values of T is defined by the rule

(a<c)=(@<y) (1.2)

1.4. STANDARD PRIMITIVE TYPES

Standard primitive types are those types that are available on most com-
puters as built-in features. They include the whole numbers, the logical
truth values, and a set of printable characters. On larger computers fractional
numbers are also incorporated, together with an adequate set of primitive
operators. We denote these types by the identifiers

integer, Boolean, char, real

The type integer comprises a subset of the whole numbers whose size
may vary between individual computer systems. It is assumed, however, that
all operations on data of this type are exact and correspond to the ordinary
laws of arithmetic and that the computation will be interrupted in the case
of a result lying outside the representable subset. The standard operators
are the four basic arithmetic operations of addition (+), subtraction (—),
multiplication (*), and division (div). The latter is understood to yield an
integer result, ignoring a possible remainder, such that, for positive m and n

m—n < (mdiva)*xn < m (1.3)
The modulus operator is defined in terms of division by the equation
(m div n)*n+(m mod n) = m (1.4)

Thus, m div n is the integer quotient of m and n, and m.mod n is the associated
remainder.

The type real denotes a subset of the real numbers. Whereas arithmetic
involving integers only is assumed to yield exact results, arithmetic on values
of type real is permitted to be inaccurate within the limits of round-off errors
caused by computation on a finite number of digits. This is the principal
reason for the explicit distinction between the types integer and real made in
most programming languages.

We denote division of real numbers yielding a real valued quotient by a
slash (/) in contrast to the div of integer division.

The two values of the standard type Boolean are denoted by the iden-

SEc. 1.4 STANDARD PRIMITIVE TYPES 9

tifiers zrue and false. The Boolean operators are the logical conjunction, union,
and negation whose values are defined in Table 1.1. The logical conjunction

p q pVa pPAg —p
true true true true false
frue false true false false
false true true false true
false false false false true

Table 1.1 Boolean Operators.

is denoted by the symbol A (or and), the logical union by V (or or), and nega-
tion by — (or not). Note that comparisons are operators yielding a result
of type Boolean. Thus, the result of a comparison may be assigned to a
variable, or it may be used as an operand of a logical operator in a Boolean
expression. For instance, given Boolean variables p and ¢ and integer variables
x =35, y = 8, z = 10, the two assignments

pi=x=y

q:=(x<p) AN (=2
yield p = false and q = tru>.

The standard type char comprises a set of printable characters. Unfor-
tunately, there is no generally accepted standard character set used on all
computer systems. Therefore, the use of the predicate “standard” may in this
case be almost misleading; it is to be understood in the sense of “standard
on the computer system on which a certain program is to be executed.”

The character set defined by the International Standards Organization
(ISO), and particularly its American version ASCII (American Standard
Code for Information Interchange) is probably the most widely accepted set.
The ASCII set is therefore tabulated in Appendix A. It consists of 95 printable
(graphic) characters and 33 control characters, the latter mainly being used
in data transmission and for the control of printing equipment. A subset
with 64 printable characters (capital letters only) is widely used and called the
restricted ASCII set.

In order to be able to design algorithms involving characters (i.e., values
of type char) that are computer system independent, we should like to be able
to assume certain properties of character sets as binding, namely,

1. The type char contains the 26 Latin letters, the 10 Arabic digits, and a
number of other graphic characters, such as punctuation marks.
2. The subsets of letters and digits are ordered and coherent, i.e.,
(A <x) AN (x<2) = xisa letter

1.5
(00<x) A (x<9) = xis a digit (1.5)

10 FUNDAMENTAL DATA STRUCTURES CHAP. 1

3. The type char contains a non-printing, blank character which may be
used as a separator. (Blanks are denoted by — in Fig. 1.1).

THISUISUUAUTEXT

THISUISLIAUTEXT

Fig. 1.1 Representations of a text.

The availability of two standard type transfer functions between the types
char and integer is particularly important in the quest to write programs in
a machine independent form. We will call them ord(c), denoting the ordinal
number of character c in the set char, and chr(i), denoting the ith character
in the set char. Thus, chr is the inverse function of ord, and vice versa, that is,

ord(chr(i)) = i (if chr (i) is defined)

(1.6)
chr(ord(c)) = ¢
Particularly noteworthy are the functions
f(c) = ord(c) — ord(‘0’) = the position of ¢ among the digits .

g(i) = chr(i+ord(‘0’)) = the i’th digit
For example, f(‘3") = 3, g(5) = ‘5°. fis the inverse function of g, and vice

versa, i.e.,
fle@)y =i (0=<i<9)
gf(@) =c (00=<c<9)
These transfer functions are used in the conversion of internal representations

of numbers into sequences of digits, and vice versa. In fact, they represent
these conversions on the most elementary level, namely that of a single digit.

(1.8)

1.5. SUBRANGE TYPES

It is often the case that a variable will assume values of a certain type
within a specific interval only. This can be expressed by defining the variable
to be of a subrange type according to the format

type T = min..max (1.9)

where min and max are the limits of the interval.

SEC. 1.6 THE ARRAY STRUCTURE 11

EXAMPLES
type year == 1900 .. 1999
type letter = ‘A’ . .2’
type digit = ‘0°. .9
type officer = lieutenant . . general

Given the variables
var y: year
var L: letter

the assignments y:= 1973 and L:= ‘W’ are permissible, but y:= 1291
and L := ‘9’ are not. The legality of such assignments cannot be verified by
a compiler unless the value to be assigned is denoted by a constant or a
variable of the same type. However, the admissibility of assignments of the
kind
yi=1I and L:=c

where i is of type integer and c is of type char, can be checked only upon
program execution. In practice, systems performing these checks have proved
enormously valuable in program development. Their utilization of redundant
information to detect possible errors is again a prime motivation for using
high-level language.

1.6. THE ARRAY STRUCTURE

The array is probably the most widely known structure of data because in
many languages, including FORTRAN and ALGOL 60, it is the only explic-
itly available structure. An array is a homogeneous structure; it consists of
components which are all of the same type, called the base type. The array
is also a so-called random-access structure; all components can be selected
at random and are equally accessible. In order to denote an individual com-
ponent, the name of the entire structure is augmented by the so-called index
selecting the component. This index is to be a value of the type defined as the
index type of the array. The definition of an array type 7 therefore specifies
both a base type T, and an index type I.

type T = array[/] of T, (1.10)

EXAMPLES
type Row = array[l .. 5] of real
type Card = arrayll . . 80] of char
type alfa = array[l . . 10] of char

12 FUNDAMENTAL DATA STRUCTURES CHAP. 1

A particular value of a variable
var x: Row

with every component satisfying the equation x; = 27" may be visualized
as shown in Fig. 1.2.

X4 0.5

X2 0.25

X3 0.125

Xa 0.0625

X 0.03125 Fig. 1.2 Array of type row.
A structured value x of type T with component values ¢y, . . ., ¢, may be

denoted by an array constructor and an assignment statement:
x:=T(cy...,¢,) (1.11)

The inverse operator of the constructor is the selector. It selects an individ-
ual component from the array. Given an array variable x, we denote an
array selector by the array name augmented with the respective component
index i:

x[i] (1.12)

The common way of operating with arrays, particularly with large
arrays, is to selectively update single components rather than to construct
entirely new structured values. This is expressed by considering an array
variable as representing an array of component variables and by permitting
assignments to selected components.

ExXAMPLE
x[i] := 0.125

Although selective updating causes only a single component value to change,
from a conceptual point of view we must regard the entire composite value
as having changed too.

The fact that array indices, i.e., “names” of array components, must be
of a defined (scalar) data type has a most important consequence. Indices
may be computed; an index expression may be substituted in place of an
index constant. This expression is to be evaluated, and the result determines
the selected component. This generality not only provides a most significant
and powerful programming facility, but at the same time it also gives rise to
one of the most frequently encountered programming mistakes: The resulting
value may be outside the interval specified as the range of indices of the

SEC. 1.6 THE ARRAY STRUCTURE 13

array. We will assume that adequate computing systems provide a warning
in the case of such a mistaken access to a non-existent array component.

Normally, an index type will have to be a scalar type, i.e., an unstructured
type upon which an ordering relation is defined. If the base type of an array
is also an ordered type, then a natural ordering relation is given upon that
array type. The natural ordering of two arrays is determined by the two
corresponding unequal components with least indices. This is expressed for-
mally as follows:

Given two arrays x and y, the relation x < y holds if and only if there exists
an index k such that x[k] < y[k] and x[i] = y[i] for all i < k. (1.13)

For example,
(2,3,5,7,9) < (2,3,5,7,11)
‘LABEL> < ‘LIBEL’

In most applications, however, no ordering is presumed to exist on array
types.

The cardinality of a structured type is the product of the cardinality of its
components. Since all components of an array type 4 are of the same base
type B, we obtain

cardinality(4) = (cardinality(B))" (1.14)

where n = cardinality(/), and I is the array’s index type.

The following short piece of program shows the use of the array selector.
The purpose of the program is to find the least index / of a component with
value x. The search is performed by a sequential scan of the array a, declared
as

var a: array [l .. N]of T; {N>O0}

i:=0;

repeat i := i+ 1 until (a[i]=x) V (i=N);

if a[i] # x then “there is no such element in a”

(1.15)

A variant of this program uses the common technique of a sentinel posted
at the end of the array. The purpose of the sentinel is to allow a simplification
of the termination condition of the repetition.

var a: array[l .. N+1] of T;

i:= 0; a[N+1] := x;

repeat [: = i1 until a[i] = x;

if i > N then “there is no such element in a”

(1.16)

The assignment a[N+ 1] := x is an example of selective updating, i.e., of the
alteration of a selected component of a structured variable. The essential
condition that holds no matter how often the statement i:=i+1 was
repeated, is

alj] =# x, for j=1...i—1

14 FUNDAMENTAL DATA STRUCTURES CHAP. 1

in both versions (1.15) and (1.16). This condition is therefore called a loop
invariant.

The search can, of course, be speeded up considerably if the elements
are already ordered (sorted). In this case, the principle of repeated halving of
the interval in which the desired element must be searched is most common.
1t is called bisection or binary search and is shown in (1.17). In each repetition,
the inspected interval between indices i and j is bisected. The number of
required comparisons is therefore at most [log, (V)].

i:=1;j:= N;
repeat k := (i+j) div 2;
if x > afk]theni := k+1elsej := k—1
until (a[k]=x) V (i>))
(The relevant invariant condition at the entrance of the repeat statement is
alh] < x for h=1...i—1
alhl >x for h=j+1...N
Hence, if the program terminates with a[k]s£x, it implies that there exists
noaglhl = xwith 1 < h<<N))

(1.17)

Constituents of array types may themselves be structured. An array
variable whose components are again arrays is called a matrix. For example,

M: array[l .. 10] of Row

1S an array consisting of ten components (rows), each consisting of five
components of type real, and is called a 10 X 5 matrix with real components.
Selectors may be concatenated accordingly, such that

Mi][/]
denotes the jth component of row M[i], which is the ith component of M.
This is usually abbreviated as

MIi, j]
and in the same spirit the declaration

M array[l .. 10] of array[l . . 5] of real
can be written more concisely as
M: array[l .. 10, 1.. 5] of real.

If a certain operation has to be performed on a/l components of an array
or on adjacent components of a part of the array, then this fact may conveni-
ently be emphasized by using the for statement, as shown in the following
example.

Assume that a fraction f is represented by the array d such that

k=1
f= 2 d*10"
=~

SEC. 1.6 THE ARRAY STRUCTURE 15

i.e., by its decimal form with k& — 1 digits. Now fis to be divided by 2. This is
done by repeating the familiar division operation for all k — 1 digits d,,
starting with i = 1. It consists of dividing the digit by 2, taking into account a
possible carry from the previous position, and of retaining a possible
remainder r for the next step [see (1.18)].

r = 10%r4-d[il;
dli] := rdiv2; (1.18)
ri= r—2xd[i]

This process is applied in Program 1.1 to compute a table of negative powers
of 2. The repetition of halving to compute 27!, 272, ..., 27" is again appro-
priately expressed by a for statement, thus leading to a nesting of two for
statements.

program power (output);
{decimal representation of negative powers of 2}
const n = 10;
type digit = 0..9;
var Lk,r: integer;
d: array [1 .. n] of digit;
begin for k := 1tondo
begin write(‘.”); r := 0;
fori:= 1tok—1do
begin r : = 10%r+d[i]; d[i] := r div 2;
r 1= r—2xd[i]; write(chr(d[i]+0rd(‘0%)))
end ;
dlk] := 5; writeln(‘5)
end
end .

Program 1.1 Compute powers of 2.
The resulting output for n = 10 is

.5

.25

125

.0625
.03125
.015625
.0078125
.00390625
.001953125
.0009765625

16 FUNDAMENTAL DATA STRUCTURES CHAP. 1

1.7. THE RECORD STRUCTURE

The most general method to obtain structured types is to join elements of
arbitrary, possibly themselves structured, types into a compound. Examples
from mathematics are complex numbers, composed of two real numbers,
and coordinates of points, composed of two or more real numbers according
to the dimensionality of the space spanned by the coordinate system. An
example from data processing is describing people by a few relevant charac-
teristics, such as their first and last names, their dates of birth, sex, and marital
status.

In mathematics such a compound type is called the Cartesian product
of its constituents types. This stems from the fact that the set of values defined
by this compound type consists of all possible combinations of values, taken
one from each set defined by each constituent type. Thus, the number of such
combinations, also called n-tuples, is the product of the number of elements
in each constituent set, that is, the cardinality of the compound type is the
product of the cardinalities of the constituent types.

In data processing, composite types, such as descriptions of persons
or objects, usually occur in files or “data banks” and record the relevant
characteristics of a person or object. The word record has therefore become
widely accepted to describe a compound of data of this nature, and we adopt
this nomenclature in preference to the term Cartesian product.

In general, a record type T is defined as follows:

type T = record s,: T;
0 Ty
e (1.19)

Cardinality (T) = cardinality (T,)* - - - *cardinality (7,)
EXAMPLES

type Complex = record re: real;
im: real
end
type Date = record day: 1..31;
month: 1..12;
year: 1..2000
end

Sec. 1.7 THE RECORD STRUCTURE 17
type Person = record name: alfa;
firstname: alfa,
birthdate: Date;
sex: (male, female),
marstatus: (single, married,

widowed, divorced)
end

A value of type T may be constructed by a record constructor and sub-
sequently assigned to a variable of that type:
x 1= T(xy, Xp5 ..., X,) (1.20)
where the x,’s are values of the constituent types T;.
Given record variables

z: Complex
d: Date
p: Person
particular values may be assigned, for example, as follows (see Fig. 1.3):
z := Complex (1.0,—1.0)

d := Date (1,4,1973)
p 1= Person (WIRTH’, ‘CHRIS’, Date (18,1,1966), male, single)
Complex z Dated Person p
1.0 1 WIRTH
_10 4 CHRIS
1973 18| 1| 1966
male
single

Fig. 1.3 Records of the types complex, date, and person.

The identifiers sy, . . ., s, introduced by a record type definition are the
names given to the individual components of variables of that type, and they

are used in record selectors applied to record structured variables. Given
a variable x: T, its ith component is denoted by

x.5; (1.21)

Selective updating of x is achieved by using the same selector denotation on

18 FUNDAMENTAL DATA STRUCTURES CHAP. 1

the left side in an assignment statement:
X.8; 1= X

where x; is a value (expression) of type T..
Given the record variables

z: Complex
d: Date
p: Person

the following are selectors of components of z, d, and p:

z.im (of type real)
d.month (of type 1..12)
p.name (of type alfa)
p.birthdate (of type Date)

p-birthdate.day (of type 1..31)

The example of the type Person shows that a constituent of a record type
may itself be structured. Thus, selectors may be concatenated. Naturally,
different structuring types may also be used in a nested fashion. For example,
the ith component of an array a being a component of a record variable r
is denoted by

r.alil,

and the component with the selector name s of the ith record structured
component of the array a is denoted by

alil.s

It is a characteristic of the Cartesian product that it contains a// combinations
of elements of the constituent types. But it must be noted that in practical
application not all of them may be “legal,” i.e., meaningful. For instance, the
type Date as defined above contains the values

(31,4,1973) and (29,2,1815)

which are both dates of days that never occurred. Thus, the definition of this
type does not mirror the real-world situation; but it is close enough for
practical purposes, and it is the responsibility of the programmer to ensure
that meaningless values never occur during the execution of his program.

The following short excerpt from a program shows the use of record
variables. Its purpose is to count the number of “Persons” represented by the
array variable a which are both female and single:

sec. 1.7 THE RECORD STRUCTURE 19

var a: array[l .. N] of Person;
count: integer;
count := 0;

fori:= 1to Ndo (1.22)
if (alil.sex = female) N (a[i]l.marstatus = single) then
count := count+1
The relevant loop-invariant is
count = C(i)
where C(/) is the number of single, female members of the subset a, ... a,.

A notational variant of the above statement uses a construct that is called
a with-statement:

fori:= 1to N do
with a[i] do
if (sex = female) N (marstatus = single) then
count := count+1

(1.23)

The meaning of with r do s is that selector names of the type of the variable r
may be used without prefix within the statement s and are taken to refer
to the variable r. The with-statement thus serves to abbreviate the program
text as well as to prevent re-evaluation of the storage address of the indexed
component afi].

In a further example, we assume that (possibly in order to find them
more quickly) certain groups of persons in the array a are linked together.
The linking information is represented by an additional component of the
record structure Person, named link. The links connect records into a
linear chain so that each person’s successor and predecessor may be found
easily. The interesting property of this linking technique is that the chain
may be traversed in both directions on the basis of a single number stored in
each record. The technique works as follows.

Assume that the indices of three consecutive members of the chain are
k15 1Iks Ixsr1- The link value of the kth member is chosen to be i, — i)_,.
Traversing the chain in the forward direction, i, ; is determined from the two
current index variables x = i,_, and y = i, as

ixe1 = x-+alyllink ,

whereas traversing the chain in the backward direction, i,_, is determined
from x =i,,, and y =i, as

ik— 1 = X—a[y].[ii’lk

An example is linking all persons of equal sex in a table (see Table 1.2).

20 FUNDAMENTAL DATA STRUCTURES CHAP. 1

First Name Sex Link
1 Carolyn F 2
2 Chris M 2
3 Tina F 5
4 Robert M 3
5 Jonathan M 3
6 Jennifer F S
7 Raytheon M S
8 Mary F 3
9 Anne F I
10 Mathias M 3

Table 1.2. Array with elements of type Person.

The record structure and the array stucture have the common property
that both are “random-access” structures. The record is more general in the
sense that there is no requirement that all constituent types must be identical.
In turn, the array offers greater flexibility by allowing its component selectors
to be computable values (represented by expressions), whereas the selectors
of record components are fixed identifiers declared in the record type defini-
tion.

1.8. VARIANTS OF RECORD STRUCTURES

In practice, it is often convenient and natural to consider two types simply
as variants of the same type. For example, the type Coordinate of the preced-
ing section may be regarded as the union of its two variants of Cartesian and
polar coordinates whose constituents are (a) two lengths and (b) a length and
an angle, respectively. In order to identify the variant actually assumed by
a variable, a third component will be introduced. It is called the type discrim-
inator or tag field.

type Coordinate =
record case kind: (Cartesian, polar) of
Cartesian: (x, y: real);
polar: (r: real; ¢: real)
end

Here, the name of the tag field is kind, and the names of the coordinates are
either x and y in the case of a Cartesian value or they are r and ¢ in the case
of a polar value.

SEC. 1.8 VARIANTS OF RECORD STRUCTURES 21

The set of values denoted by this type Coordinate is the union of the two
types
T, = (x, y: real)
T, = (r: real; ¢: real)

and its cardinality is the sum of the cardinalities of 7, and T,.

Very often, however, there are not two entirely distinct types to be united,
but rather two types with partly identical components. It is this predominant
situation which gave rise to the term variant record structure. An example is
that of the type Person, defined in the preceding section in which the relevant
characteristics to be recorded in a file depend on the sex of the person. For
example, for a male, his weight and whether or not he is bearded may be
regarded as relevant in a particular situation, but for a female, three
characteristic measurements may be taken as significant (whereas her weight
may be confidential). Following is a type definition resulting from such con-
siderations:

type Person =
record name, firstname: alfa;
birthdate: Date;
marstatus: (single, married, widowed, divorced);
case sex: (male, female) of
male: (weight: real;
bearded: Boolean);
female: (size: array[l .. 3] of integer)
end

The general form of a variant record type definition is

type T =
records, :T,;...;8,_:T, |;
case s,: T, of
IR CTIRE ST PR S K (1.24)
Cot St i T o3 S Tonyn)
end

The s, and s,; are the selector names of the components with constituent types
T, and T;;, and s, is the name of the discriminating tag field with type T,.
The constants ¢, . .. ¢,, denote the values of the (scalar) type T,. A variable
x of type T consists of the components

XSy X2y o ooy XSy XoSp 15 0 v o s XS,

22 FUNDAMENTAL DATA STRUCTURES CHAP. 1

if and only if the (current) value of x.s, = c,. The components x.s,, ..., X.5,
constitute the common part of the m variants.

Consequently, using a component selector x.s,,(1 < h<n;) when
x.s, 7 ¢, must be regarded as a serious programming mistake and (in
reference to the type Person defined above) amounts to asking whether or
not a lady is bearded or (in the case of selective updating) ordering her to be
so!

In using variant records utmost care is therefore required, and corre-
sponding operations on the individual variants are best grouped in a selective
statement, the so-called case statement, whose structure mirrors that of the
variant record type definition.

case x.s, of
€183
€2: 83 (1.25)

Ct S

S, stands for the statement catering for the case that x assumes the form of
variant k, i.e., it is selected for execution if and only if the tag field x.s,
has the value ¢,. As a consequence, it is fairly easy to safeguard against the
misuse of selector names by verifying that each S, contains only selectors

X.S1 o XSy y
and

XoSgq oo XeSgop,
The purpose of the following short piece of program is to compute the dis-
tance between two points 4 and B given by the variables a and b of the variant
record type Coordinate. The computational procedure differs according to

the four possible combinations of Cartesian and polar coordinates (see Fig.
1.4).

Yy
a.x A
T |
|
| d
a.r I
1a.y
[hx 8
| |
av | b.r :b.y M Fig. 1.4 Cartesian and polar coordi-
L 169 I _»~ nates.

SEc. 1.9 THE SET STRUCTURE 23

case a.kind of
Cartesian: case b.kind of
Cartesian: d := sqrt(sqr(a.x—b.x)+sqr(a.y—b.y));
Polar: d := sqrt(sqr(a.x—b.rxcos(b.p)
+sqr(a.y—Db.rxsin(b.g))
end;
Polar: case b.kind of
Cartesian: d := sqrt(sqr(a.r=sin(a.p)—b.x)
+sqr(a.rxcos(a.p)—b.p));
Polar: d := sqrt(sqr(a.r)+sqr(b.r)
—2xa.r+b.rxcos(a.9—b.9))
end
end

1.9. THE SET STRUCTURE

The third fundamental data structure—in addition to the array and the
record—is the set structure. It is defined by the following declaration pattern:

type T = set of T, (1.26)

The possible values of a variable x of type T are sets of elements of T;,. The
set of all subsets of elements of a set T, is called the powerset of T,. The type
T thus comprises the powerset of its base type T,.

EXAMPLES

type intset = set of 0..30
type charset = set of char
type tapestatus = set of exception

The second example is based on the standard set of characters denoted
by the type char; the third example is based on a set of exception conditions
which might be defined as a scalar type

type exception = (unloaded, manual, parity, skew)

describing the various exceptional states that a magnetic tape unit may
assume. Given the variables

is : intset

¢s @ charset

t : array[l .. 6] of tapestatus

particular values of set types may be constructed and assigned, for example,

24 FUNDAMENTAL DATA STRUCTURES CHAP. 1

as follows:¥

is :=11,4,9, 16, 25]

cs :: [6+’, ‘_’, ‘*’, ‘/,]
1[3] := [manual]

15} :=1[1]

t[6] := [unloaded . . skew)

Here, the value assigned to £[3] is the singleton set consisting of the single
element manual; to t[5] is assigned the empty set, meaning that the fifth tape
unit is returned to operational (non-exceptional) status, whereas 1[6] is
assigned the set of all four exceptions.

The cardinality of a set type T is

cardinality(T) = 2cardinality(To) (1.27)

This can easily be derived from the fact that each of the cardinality (7T,)
elements of T, must be represented by one of the two values “present” or
“absent” and that all elements are independent of each other. It is evidently
essential for an efficient and economical implementation that the base type
be not only finite, but that its cardinality is reasonably small.

The following elementary operators are defined on all set types:

* set intersection
+ set union

— set difference
in set membership

Constructing the intersection or union of two sets is often called set mul-
tiplication or set addition, respectively; the priorities of the set operators are
defined accordingly, with the intersection operator having priority over the
union and difference operators, which in turn have priority over the member-
ship operator, which is classified as a relational operator. Following are
examples of set expressions and their fully parenthesized equivalents:

rxs 4+t = (rxs)+t
r— s*t = r—(sx)
r—s -+t =(r—s)+t
xins + ¢ = x in (s+71)

Our first example of an application of the set structure is the program of
a simple scanner of a compiler. We assume that the purpose of the scanner is

+Contrary to conventional notation, we use brackets instead of braces for sets. We
reserve braces to delimit comments within programs.

SEC. 1.9 THE SET STRUCTURE 25

to translate a sequence of characters into a sequence of textual units of the
language to be compiled, of so-called tokens or symbols. The scanner is to be
represented as a procedure which each time it is called reads a sufficient num-
ber of input characters in order to generate the single next output symbol.
The particular rules of translation will be the following:

1. The set of output symbols consists of the elements identifier, number,
lessequal, greaterequal, becomes, and others which correspond to various
single characters such as +, —, *, etc.

2. The symbol identifier is generated upon reading a sequence of letters and
digits starting with a letter.

3. The symbol number is generated upon reading a sequence of digits.

3. The symbols lessequal, greaterequal, and becomes are generated upon
reading the respective character pairs <=, >= , := .

4. Blanks and ends of lines are skipped.

We have at our disposal a primitive procedure read(x) which picks the
next character off the input sequence and assigns it to the variable x. The
resulting output symbol is to be assigned to a global variable called sym.
Moreover, there are the global variables id and num, whose purpose will be
evident from Program 1.2, and ch representing the currently scanned charac-
ter in the input sequence. S denotes a mapping of characters to symbols, i.e.,
an array of symbols with an index domain over those characters which are
neither digits nor letters. The use of sets of characters demonstrates how a
scanner can be programmed independently of the order of the characters in
the underlying character set.

A second example is drawn from constructing a school timetable. Suppose
that M students have made their choices among N subjects. Now a timetable
is to be constructed such that certain subjects are scheduled to be given at the
same time in such a way that no conflicts arise [1.1].

In general, the construction of a timetable is a most difficult combina-
torial problem, and a choice must be made under many constraints and with
many factors to be considered. In this example we will simplify the problem
drastically, without making the claim of a solution for a realistic timetable
situation.

First of all, we realize that in order to find suitable choices for “parallel”
sessions, we may base the decisions upon a set of data derived from the indi-
vidual student’s course registrations, namely, from the enumeration of courses
that cannot be given simultaneously. Therefore, we first program a data
reduction process, based on the following declarations and on the convention
that students are numbered from 1 to M and courses from 1 to N.

26 FUNDAMENTAL DATA STRUCTURES

var ch: char;
sym: symbol,
num: integer,
id: record
k:0..maxk;
a: array [1 .. maxk] of char
end ;
procedure scanner;
var chl: char;
begin {skip blanks}
while ch = ‘.’ do read(ch);
if chin ['A’..Z’] then
with id do
begin sym := identifier; k := 0;
repeat if k << maxk then
begin k := k+1; alk] := ch
end ;
read(ch)
until —(ch in ['A’..Z, ‘0°..°9)
end else
if ¢h in [0’ .. ‘9’] then
begin sym := number; num := 0;
repeat num := 10*num-ord(ch)—ord(‘0’);
read(ch)
until —(ck in ['0’.. ‘9]
end else
if chin [‘<<’, *°, ‘>’] then
begin chl := ch; read(ch);
if ch = ‘=" then
begin
if chl = ‘<’ then sym := leq else
if chl = ‘>’ then sym := geq else sym := becomes,
read(ch)
end
else sym := S[chl]
end else

begin {other symbols}
sym := S|[ch]; read(ch)
end
end {scanner}

Program 1.2 A scanner.

CHAP. 1

SEC. 1.9 THE SET STRUCTURE 27

type course = 1..N;
Student = 1..M;
selection = set of course;
var s: course,
i: student;
registration: array[student] of selection,
conflict: array[course] of selection, (1.28)
{Determine the sets of conflicting courses from the individual ’
student’s course registrations}
fors:= 1 to N do conflict[s] := [];
fori:=1to M do
fors := 1 to N do
if s in registration[i] then
conflict[s] := conflict[s] + registration]i]

(Note that s in conflict[s] is a consequence of this algorithm.)

The main task now consists of constructing a timetable, i.e., a list of
sessions, each session being a selection of courses that do not conflict. From
the whole set of courses we pick suitable, non-conflicting subsets of courses,
subtracting them from a variable called remaining, until that set of remaining
courses is empty.

var k: integer;
remaining, session: selection;
timetable: array[l . . N] of selection;
k := 0; remaining := [1..N];

while remaining = [] do (1.29)
begin session := next suitable selection;
remaining := remaining — session;

k := k—+1; timetable[k] := session
end

How do we make a “next suitable selection”? At the outset, we may
select any single course from the set of remaining courses. Subsequently,
the choice of further candidates may be restricted to the set of courses from
the set of remaining courses which do not conflict with the ones initially
selected. We call this set the trialser. When investigating a candidate from the
trialset, we see that its choice depends upon whether or not the intersection
of the already selected courses with the conflict-set of the candidate is empty.
This leads to the following elaboration of the statement “session := next
suitable selection” :

*SaInjondIs Byep [ejuswepung €' dqeL
(0 adKy ur Jojerodo
Je[eds Jo pue) [euoneaI Yiim
(on)p10oT Jesnuap! IV 1591 diysiaquiay QUON 0rjJos :s 1S
pud
4y s
s dweu juduodwod ..
. 1=t Ioyip pare[osp ‘Tpits
Cppawo ﬂ A[[enpiaipul Ay Yim J03109]9S ({“s-""1s}>8) s L ls ploddr lu pio2oyg
1 xaput
©r) Jqeindwos
(nprea(OL)P40I eanuapl IV Yim 10399[3S asn [0L fo [[lAenre v Aeny
Ajifeuipae) sad£], £Aq syusuodwo)) 10393138 uoneIe[Pq aInjonas

jusuodwo)

[0} =70) w4

28

sec. 1.10 REPRESENTATION OF ARRAY, RECORD, AND SET STRUCTURES 29

var s,t. course;
trialset: selection;

begin 5 := 1;
while —(s in remaining) do s := s+1;
session 1= [s]; trialset := remaining — conflict[s];

for t := 1 to N do (1.30)

if ¢ in trialset then
begin if conflict[t] = session = [] then
session := session -+ [t]
end
end

Evidently, this solution for selecting “suitable” sessions will not generate a
timetable which is necessarily optimal in any specific sense. In unfortunate
cases the number of sessions may be as large as that of courses, even if simul-
taneous scheduling were feasible.

1.10. REPRESENTATION OF ARRAY, RECORD,
AND SET STRUCTURES

The essence of the use of abstractions in programming is that a program
may be conceived, understood, and verified on the basis of the laws governing
the abstractions and that it is not necessary to have further insight and knowl-
edge about the ways in which the abstractions are implemented and repre-
sented in a particular computer. Nevertheless, it is helpful for a successful
programmer to have an understanding of widely used techniques for repre-
senting the basic concepts of programming abstractions, such as the funda-
mental data structures. It is helpful in the sense that it might enable the
programmer to make sensible decisions about program and data design in
the light not only of the abstract properties of structures, but also of their
realizations on actual computers, taking into account a computer’s particular
capabilities and limitations.

The problem of data representation is that of mapping the abstract
structure into a computer store. Computer stores are—in a first approxima-
tion—arrays of individual storage cells called words. The indiceso f the
words are called addresses.

var store: array[address] of word (1.31)

The cardinalities of the types address and word vary from one computer
to another. A particular problem is the great variability of the cardinality
of the word. Its logarithm is called the wordsize, because it is the number of
bits that a storage cell consists of.

30 FUNDAMENTAL DATA STRUCTURES CHAP. |

1.10.1. Representation of Arrays

A representation of an array structure is a mapping of the (abstract)
array with components of type T onto the store which is an array with
components of type word.

The array should be mapped in such a way that the computation of
addresses of array components is as simple (and therefore efficient) as possi-
ble. The address or store index i of the jth array component is computed by
the linear mapping function

i=iy+j*s (1.32)
where i, is the address of the first component, and s is the number of words
that a component “occupies.” Since the word is by definition the smallest
individually accessible unit of store, it is evidently highly desirable that s
be a whole number, the simplest case being s = 1. If 5 is not a whole number
(and this is the normal case), then s is usually rounded up to the next larger
integer [s]. Each array component then occupies [s] words, whereby [s] — s
words are left unused (see Figs. 1.5 and 1.6). Rounding up of the number of

o store

r
F q/(«//%%///(‘(m ey abstract

Nnnm array
I

. YL 777 7 L —

i

Fig. 1.5 Mapping an array onto a store.

s=2.3

[s] =3

A ~ Fig. 1.6 Padded representation of a
unused record.

words needed to the next whole number is called padding. The storage utiliza-
tion factor u is the quotient of the minimal amounts of storage needed to
represent a structure and of the amounts actually used:

u=%;ﬁ (1.33)

Since an implementor will have to aim for a storage utilization as close to

sec. 1.10 REPRESENTATION OF ARRAY, RECORD, AND SET STRUCTURES 31

1 as possible, and since accessing parts of words is a cumbersome and
relatively inefficient process, he will have to compromise. Following are the
considerations to be made:

1. Padding will decrease storage utilization.

2. Omission of padding may necessitate inefficient partial word access.

3. Partial word access may cause the code (compiled program) to expand
and therefore to counteract the gain obtained by omission of padding.

In fact, considerations 2 and 3 are usually so dominant that compilers will
always use padding automatically. We notice that the utilization factor will
always be v > 0.5, if s > 0.5. However, if s << 0.5, the utilization factor
may be significantly increased by putting more than one array component
into each word. This technique is called packing. If n components are packed
into a word, the utilization factor is (see Fig. 1.7)

u— [:’1—; (1.34)

[T T T T 1T 8B™

Fig. 1.7 Packing six components into one word.

Access to the ith component of a packed array involves the computation
of the word address j in which the desired component is located and involves
the computation of the respective component position k within the word.

j =idivn
(1.35)
k =imod n = i—j*n

In most programming languages the programmer is given no control
over the representation of the abstract data structures. However, it should
be possible to indicate the desirability of packing at least in those cases in
which more than one component would fit into a single word, i.e., when a
gain of storage economy by a factor of 2 and more could be achieved. We
introduce the convention to indicate the desirability of packing by prefixing
the symbol array (or record) in the declaration by the symbol packed.

EXAMPLE
type alfa = packed array [1 . . n] of char

This feature is particularly valuable on computers with large words and
relatively convenient accessibility of partial fields of words. The essential
property of this prefix is that it does in no way change the meaning (or cor-
rectness) of a program. This means that the choice of an alternative repre-
sentation can be easily indicated with the implied guarantee that the meaning
of the program remains unaffected.

32 FUNDAMENTAL DATA STRUCTURES CHAP. 1

The cost of accessing components of a packed array can in many cases
be drastically reduced if the entire array is unpacked (or packed) at once.
The reason is that an efficient sequential scan over the entire array is possible,
making it unnecessary to evaluate a complicated mapping function for each
individual component. We therefore postulate the existence of two standard
procedures pack and unpack as defined below. Assume that there are variables

u:arrayla..dlof T
p - packed array [b..clof T

where a << b << ¢ << d are all of the same scalar type. Then

pack(u, i, p), (@< i< b—c+d) (1.36)
is equivalent to

pljl := ulj+i=bl, j=b...c
and
unpack(p, u, i), @<i<b—c+4d (1.37)

is equivalent to

ulj+i—>5l:=pljl, j=b...c

1.10.2. Representation of Record Structures

Records are mapped onto a computer store (allocated) by simply jux-
taposing their components. The address of a component (field) r; relative
to the origin address of the record r is called the component’s offset k,. It is
computed as

ki=s,+s,+---+ 5, (1.38)

where s; is the size (in words) of the jth component. The fact that all com-
ponents of an array are of equal type has the consequence that

Sy =8y = =S,
and therefore
ki=si+ - +s=>0—1-s

The generality of the record structure does not allow such a simple, linear
function for offset address computation in general, and it is therefore the very
reason for the requirement that record components be selectable only by
fixed identifiers. This restriction has the desirable consequence that the respec-
tive offsets are known at compile time. The resulting greater efficiency of
record field access is well-known.

The problem of packing may arise if several record components can be
fitted into a single storage word (see Fig. 1.8). We will again assume that the
desirability of packing may be indicated in a declaration by prefixing the sym-
bol record by the symbol packed. Since offsets are computable by a compiler,

sec. 1.10 REPRESENTATION OF ARRAY, RECORD, AND SET STRUCTURES 33

s1

s2 I s3 V

s4 | «— padding
V /
s5 /
s6 [s7l s8 W

Fig. 1.8 Representation of a packed record.

the offset of a component within a word may also be determined by a com-
piler. This means that on many computers the packing of records will cause
a decrease in access efficiency considerably smaller than that caused by the
packing of arrays.

1.10.3. Representation of Sets

A set s is conveniently represented in a computer store by its characteristic
Sfunction C(s). This is an array of logical values whose ith component specifies
the presence or absence of the value i in the set. The size of the array is deter-
mined by the set type’s cardinality.

C(s) = (iin 5) (1.39)
As an example, the set of small integers
s=1[1,4,8,9]
is representable by the sequence of logical values F (false) and T (true),
C(s) = (FTFFTFFFTT)

if the base type of s is the integer subrange 0..9. In a computer store the
sequence of logical values is represented as a so-called bitstring (see Fig. 1.9).

s{ 0100100011 % Fig. 1.9 Representation of a set as a
012 .. 9 bitstring.

The representation of sets by their characteristic function has the
advantage that the operations of computing the union, intersection, and
difference of two sets may be implemented as elementary logical operations.
The following equivalences, which hold for all elements i of the base type of
the sets x and y, relate logical operations with operations on sets:

iin (x+y) = (in x) V (i in p)
iin (xxp) = (in x) A (i in y) (1.40)
iin (x—y) = (iin x) A /(i in y)

34 FUNDAMENTAL DATA STRUCTURES CHAP. 1

These logical operations are available on all digital computers, and moreover
they operate concurrently on all corresponding elements (bits) of a word.
It therefore appears that in order to be able to implement the basic set opera-
tions in an efficient manner, sets must be represented in a small, fixed number
of words upon which not only the basic logical operations, but also those of
shifting are available. Testing for membership is then implemented by a single
shift and a subsequent (sign) bit test operation. As a consequence, a test of
the form
xin[ecy, ¢y, ..., €

can be implemented in a much more efficient manner than the equivalent
conventional Boolean expression

x=c)Vx=c)V---V(x=c)

A corollary is that the set structure should be used only in the case of
small base types. The limit of the cardinality of base types for which a
reasonably efficient implementation can be guaranteed is determined by the
wordlength of the underlying computer, and it is plain that computers with
large wordlengths are preferred in this respect. If the wordsize is relatively
small, a representation using multiple words for a set may be chosen.

1.11. THE SEQUENTIAL FILE STRUCTURE

The common characteristic of the data structures presented so far,
namely, the array, the record, and the set structure, is that their cardinality
is finite (provided that the cardinality of the types of their components is
finite). Therefore, they present little difficulty for the implementor; suitable
representations are readily found on any digital computer.

Most so-called advanced structures—sequences, trees, graphs, etc.—are
characterized by their cardinality being infinite. This difference to the funda-
mental structures with finite cardinality is of profound importance, and it has
significant practical consequences. As an example, we define the sequence
structure as follows:

A sequence with base type T, is either the empty sequence or the concate-
nation of a sequence (with base type T,) with a value of type 7.

The sequence type T thus defined comprises an infinity of values. Each
value itself contains a finite number of components of type T, but this number
is unbounded, i.e., for every such sequence it is possible to construct a longer
one.

Analogous considerations apply to all other “advanced” data structures.
The prime consequence is that the necessary amount of store to represent a
value of an advanced structural type is not known at compile time; in fact,
it may vary during the execution of the program. This requires some scheme

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 35

of dynamic storage allocation in which storage is occupied as the respective
values “grow” and is possibly released for other uses when values “shrink.”
It is therefore plain that the question of representation of advanced structures
is a subtle and difficult one and that its solution will crucially influence the
efficiency of a process and the economy exercised on the usage of storage.
A suitable choice can be made only on the basis of knowledge of the primitive
operations to be performed on the structure and of the frequencies of their
execution. Since none of this information is known to the designer of a
language and its compiler, he is well advised to exclude advanced structures
from a (general-purpose) language. It also follows that programmers should
avoid their use whenever their problem can be treated by using fundamental
structures only.

The dilemma of having to provide advanced data structuring facilities
without information about their potential usage is circumvented in most
languages and compilers by recognizing and using the fact that all advanced
structures are composed either of unstructured elements or of fundamental
structures. Arbitrary structures may then be generated by explicit, pro-
grammer specified operations, if facilities for the dynamic allocation of the
components and for the dynamic linking and referencing of components are
provided. Techniques for generating and manipulating these advanced struc-
tures are treated in Chapter 4.

There exists, however, one structure that is advanced in the sense that
its cardinality is infinite, but which is used so widely and so frequently that
its inclusion in the set of basic structures is almost mandatory: the sequence.
In order to describe the abstract notion of sequence, the following terminology
and notation are introduced:

. { > denotes the empty sequence.

. {x,, denotes the sequence consisting of the single component x,; it is
called a singleton sequence.

3. Ifx =<x,,...,x,>and y = {y,,...,y,> are sequences, then

x&y:<xl"“,xm3yl,*~-,yn> (1.41)

is the concatenation of x and y.
4. If x ={x,,..., X,y is a non-empty sequence, then
first(x) = x, (1.42)
denotes the first element of x.
5. If x =<{x,,...,x,y is a non-empty sequence, then
rest(x) = {Xpy oo oy X, (1.43)
is the sequence x without its first component. As a consequence, we obtain
the invariant relation

{ first(x)) & rest(x) = x (1.44)

N =

36 FUNDAMENTAL DATA STRUCTURES CHAP. 1

The introduction of these notations does not mean that they will be used
in actual programs to be obeyed by real computers. In fact, it is essential
that the concatenation operation is not used in its generality and that the
handling of sequences is confined to the application of a carefully selected
set of operators, which ensure a certain discipline of usage, but which are
themselves defined in terms of the abstract notions of the sequence and of
concatenation. A careful choice of the set of sequence operators enables
implementors to find suitable and efficient representations of sequences on
any given storage medium; this ensures that the associated mechanism of
dynamic storage allocation can be sufficiently simple to enable the pro-
grammer to work without concern for its details.

In order to make it clear that the sequence to be introduced as a basic
data structure permits only the application of a restricted set of operators
that essentially allow only strictly sequential access to components, this
structure is called a sequential file or, for short, simply file. In close analogy
to the notations for array and set type definitions, a file type is defined by the
formula

type T = file of T, (1.45)

expressing that any file of type T consists of 0 or more components of type Ty,.

EXAMPLES

type text = file of char
type deck = file of card

The essence of sequential access is that at any time only a single, specific
component of the sequence is immediately accessible. This component is
specified by a current position of the access mechanism. It may be changed by
the file operators, usually either to the next component or to the first of the
entire sequence. We formally express the file position by regarding a file x
to consist of two parts, a part x, to its left and a part x, to its right. It is plain
that the equation

x = x, & xp (1.46)

expresses an invariant relationship.

A second, most important consequence of sequential access is that the
processes of constructing and of scanning a sequence are distinct and cannot
be mixed in arbitrary order. Thus, a file is constructed by repeatedly append-
ing components (at its end), and it may subsequently be inspected by a
sequential scan. It is therefore customary to consider a file as being in one of
two states: either in the state of being constructed (written) or of being
scanned (read).

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 37

The advantage of strictly sequential access is particularly pronounced
if files are to be allocated on secondary storage media, that is, if transfers
between different media are involved. The sequential access method is the
only one in which the intricacies of mechanisms required by such transfers
can be successfully hidden from the programmer. In particular, it allows
for the application of simple buffering techniques that alone guarantee optimal
usage of the various resources available in a complex computer system.

There exist certain storage media in which the sequential access is indeed
the only possible one. Among them are evidently all kinds of tapes. But even
on magnetic drums and disks each recording track constitutes a storage
facility allowing only sequential access. Strictly sequential access is the
primary characteristic of every mechanically moving device and of some other
ones as well.

1.11.1. Elementary File Operators

We now proceed to formulate the abstract notion of sequential access
through a set of concrete elementary file operators available to the pro-
grammer. They are defined in terms of the notions of sequence and concate-
nation. There is an operator to initiate the process of file generation, one to
initiate the scan, one to append a component at the tail of the sequence, and
one to proceed in scanning to the next component. The latter two are here
postulated in a form in which they involve an implicit, auxiliary variable
that represents a buffer. We assume that such a buffer is automatically
associated with every file variable x, and we denote it by xt. Clearly, if x
is of type T, then x7 is of its base type T,.

1. Constructing the empty sequence. The operation
rewrite(x) (1.47)
stands for the assignment
x:=d>
This operation is used to overwrite the current x and to initiate the process

of constructing a new sequence, and corresponds to rewinding a tape.
2. Extending a sequence. The operation

put(x) (1.48)
stands for the assignment
x:=x & &t

which effectively appends the value xt to the sequence x.
3. Initiation of a scan. The operation

reset(x) (1.49)

38 FUNDAMENTAL DATA STRUCTURES CHAP. 1

stands for the simultaneous assignments

xp o=)
Xg 1= X
xT = first(x)

This operation is used to initiate the process of reading a sequence.
4. Proceeding to the next component. The operation

get(x) (1.50)
stands for the simultaneous assignments

xp o= xp & {first(xg))

Xg = rest(xg)

xT 1= first(rest(xg))
Note that first(s) is defined only if s 7= { >.

The operators rewrite and reset notably do not depend on the position of
the file prior to their execution. They reposition the file in any case to its
beginning.

When scanning a sequence, it is necessary to be able to recognize the
end of the sequence, because otherwise the assignment

x1 1= first(xg)

represents an undefined operation. Reaching the end of the file is evidently
synonymous with the condition that the right part x, is empty. Therefore,
we introduce the predicate

eof (x) = xz = { . (1.51)

to mean that the end of the file is reached. The operation get(x) can there-
fore only be executed if the predicate eof(x) is false.

In principle it is possible to express all operations on files in terms of the
four basic file operators. In practice, however, it is often natural to combine
the operation of advancing the file position (get or put) with the access to the
buffer variable. We therefore postulate two further procedures; they are
expressible in terms of the basic operators. Let » be a variable and e an expres-
sion of the file component type T,. Then

read(x,v) shall be synonymous with
v := xT; get(x)
and
write(x,e) shall be synonymous with
xt 1= e; put(x)
The advantage of the use of read and write in place of get and put lies not
only in brevity, but also in conceptual simplicity. For, it is now possible to

Sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 39

ignore the existence of the buffer variable x7, whose value is sometimes
undefined. The buffer variable may, however, be useful for the purpose of
“looking ahead.”

The prerequisite conditions for the execution of the two procedures are

—eof (x) for read(x,v)
eof (x) for write(x,e)

Upon reading, the predicate eof (x) becomes true as soon as the last element
of the file x has been read. These considerations are neatly incorporated in
two program schemata for the sequential construction and processing of a
file x. The statements R and S and the predicate p are additional parameters
of the schemata.

Writing a file x:

rewrite(x);

while p do
begin R(v); write(x,v)
end

(1.52)

Reading a file x:

reset(x);

while —eof (x) do
begin read(x,v); S(v)
end

(1.53)

1.11.2. Files with Substructure

In the majority of applications, large files require some kind of substruc-
ture. For instance, a book, although it may be regarded as a single sequence
of characters, is subdivided into chapters or paragraphs. The purpose of the
substructure is to provide some explicit points of reference, some coordinates,
in order to facilitate orientation in the long sequence of information. Existing
storage devices often provide some facilities for representing such points
of reference (e.g., tape marks) and have the capability of locating them with
greater speed than is obtained when all information in between such points
is scanned.

In our framework of notation the natural way to introduce a first level
of substructure is to regard such a file as a sequence of components which
are themselves sequences, that is, as a file of files. Assuming that the ultimate
components (or units) are of type U, the substructures are then of type

T = fileof U

40 FUNDAMENTAL DATA STRUCTURES CHAP. 1

and the entire file is of type
T = fileof T’

It is plain that in this manner files can be constructed with a partitioning to an
arbitrary depth of nesting. In general, a type T, can be defined by the recursive
relation

T, = fileof T,_, i=1...n

and T, = U. Such files are often called multilevel files, and a component of
type T; is said to be a segment of level i. An example of a multilevel file is
a book in which the levels of segmentation correspond to chapters, sections,
paragraphs, and lines. However, by far the most common case is, of course,
the file with a single level of segmentation.

This single level segmented file is by no means identical to an array of
files. After all, the number of segments is variable, and the file may still be
extended only at its end. Remaining within the framework of our notation
introduced so far, and assuming a file defined by

x: file of file of U

x7 denotes the currently accessible segment, x11 the currently accessible unit
component. Accordingly, put(x}) and get(x1) refer to a unit component,
whereas put(x) and get(x) denote the operations of appending and proceed-
ing to the next segment.

Segmented files are readily implemented on virtually all sequential
storage devices including tapes. Their segmentation has not changed their
primary characteristic of permitting only sequential access either to individual
components or—by a possibly faster skipping mechanism—to segments.
Other storage devices—notably magnetic drums and disks—usually contain
a number of tracks, each of which represents a proper sequential device but
is usually too short to accommodate an entire file. Consequently, files on
disks are usually spread over several tracks and contain appropriate book-
keeping information linking the tracks. It is plain that the starting point of
each track constitutes a natural segment marker, which might easily be
accessed even more directly than markers on any purely sequential medium.
An indexable table in primary store might, for instance, be used to address
the tracks where segments begin, and to indicate the actual lengths of the
segments (see Fig. 1.10).

This leads us to the so-called indexed files (sometimes also called direct
access files). Actually, drums and disks are organized in a way that each track
contains many physical marks at which the reading or writing may start.
Therefore, it is not necessary for each segment to occupy a full track because
it would result in a poor storage utilization if segments are short in com-
parison with the track length. The storage line between two marks is called
a physical segment (or sector) in contrast to the logical segment which is a

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 41

|<—— index table

I rrrrrryj ety e iy ety Lt

Fig. 1.10 Indexed file with five segments.

meaningful entity in the program’s data structure. Clearly, each physical
segment houses one logical segment at most, and each logical segment
occupies at least one physical segment (even if it is empty). It should be kept
in mind that even if they are called “direct access” files, the average time to
locate a segment, the so-called latency time, is half the revolution time of
the disk.

Indexed files retain the essential characteristic that writing proceeds
sequentially at its end. They are therefore particularly useful in applications
in which changes occur relatively infrequently. Changes are made by either
extending or by recopying and updating the entire file. Inspection may occur
in a much more selective and faster manner via the index points. This is the
typical situation for so-called data banks.

Systems that allow selective rewriting of parts in the middle of a file are
generally difficult and hazardous to use because the new portions of informa-
tion must be of the same size as the old ones that they replace. Moreover, in
applications involving large amounts of data, selective updating is not
recommended because of the basic rule that upon any failure—be it caused by
an erroneous program or by malfunctioning equipment—there should be
a state of the data on which to fall back in order to resume and repeat the
process that failed. Therefore, updating is usually made in toto, such that the
old file is replaced by the new, updated copy, only after subsequent verifica-
tion has established that the new file is valid. For the purpose of updating, the
sequential organization is by far the best from the point of view of reliability.
It is to be much preferred over more sophisticated organizations of large
data sets, which may be more efficient, but often result in a total loss of data
upon failure of the equipment.

1.11.3. Texts

Files whose components are of type char play an especially important role
in computing and data processing: They constitute the interface between the
computing machines and their human users. The legible input provided by
programmers as well as the legible output representing the computed results

42 FUNDAMENTAL DATA STRUCTURES CHAP. 1

are sequences of characters. This data type shall therefore be given a standard
name:
type text = file of char

Communication between a computing process and its human inventor
is ultimately established by an interface that can be represented as two text-
files. One of them contains the input to the computing process, the other the
computed results called output. We shall henceforth assume the existence of
these two files in all programs, and their declaration as being

var input, output: text

With due regard to the assumption that these files represent the standard
input and output media of a computer system (such as a card reader and a
line printer), we will assume that the file input can be read only and the
file output can be written only.

Since the two standard files are used predominantly, we postulate that
if the first parameter of the procedures read and write is not a file variable,
then input and output shall be assumed by default. Moreover, we take the
liberty of providing the two standard procedures with an arbitrary number
of arguments. These notational conventions can be summarized as follows:

read(xl, ..., xn) stands for read(input,xl, ..., xn)
write(x1, ..., xn) stands for write(output, x1, ..., xn)
read(f, x1,...,xn) stands for

begin read(f,x1); .. .; read(f,xn) end
write(f, x1, ..., xn) stands for

begin write(f,x1); . . .; write(f,xn) end

Texts are typical examples of sequences displaying a substructure. The
usual units of substructure are the chapters, paragraphs, and lines. An often-
used method of representing this substructure in textfiles is the use of special
separator characters. The blank character is the best-known example, but
similar separators may be used to mark the ends of lines, paragraphs, and
chapters. For instance, the widely used ISO character set (including its
American version ASCII) contains several such elements, called control
characters (see Appendix A).

In this book, we refrain from using specific separator characters and
specifying a definite method of substructure representation. Instead, we think
of a text as a file consisting of sequences of character sequences representing
individual lines. Also, we constrain the discussion to a single level of substruc-
ture, namely, the line. However, instead of looking at texts as files of files of
printable characters, we regard them as files of characters, and we introduce
additional operators and predicates to manipulate, i.e., mark and recognize
lines. Their effects may best be understood if one assumes that lines are sepa-

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 43

rated by (hypothetical) separator characters (not belonging to the type char)
and if their task is considered to be the insertion and recognition of such
separators. Additional operators are the following:

writeln(f) Append a line marker to the file f.

readin(f) Skip characters on file fup to the one immediately follow-
ing the next line marker.

eoln(f) A Boolean function. True, if the file position had been
advanced to a marker; false otherwise. (We postulate
that if eoln(f) is true, then 7 = blank.)

We are now in a position to formulate two program schemata for writing
and reading texts similar to those for “writing” and “reading” other files
[see (1.52) and (1.53)]. These schemata assume a textfile f and pay due atten-
tion to the generation and recognition of line structure. Let R(x) be a state-
ment assigning a value to x (of type char) and defining conditions p and ¢
with meanings “this was the last character of the line” and “this was the
last character of the file.” Let U be a statement to be executed at the beginning
of each line read, S(x) a statement to be executed for each character x of the
file, and V a statement executed at the end of each line.

Writing a text f.

rewrite(f);
while —g do
begin
while —p do
begin R(x); write(f,x)
end ;
writeln(f")
end

(1.54)

Reading a text f.

reset(f);
while —eof (f) do

begin U;
while —eoln(f) do
begin read(f,x); S(x)
end ;
V; readin(f)
end

(1.55)

44 FUNDAMENTAL DATA STRUCTURES CHAP. 1

There are cases in which the line structure of a text does not represent
any particularly relevant information. Our assumption about the buffer
variable’s value upon encountering a line marker [see definition of eoln(f)]
allows a simple program schema to be used in these situations. Note that
according to the definition of eoln each end of a line appears as an additional
blank character.

while —eof (f) do
begin read(f,x); S(x) (1.56)
end

In most programming languages it is customary to admit arguments of
type integer or real to read and write procedures. This generalization would
be straightforward if the types integer and real were defined as arrays of
characters whose elements would denote the individual digits of the num-
bers. Languages strongly oriented towards commercial applications do indeed
adhere to such definitions, and they require a representation of numbers in
terms of decimal digits and of the decimal number system. The significant
advantage of introducing the data types integer and real as fundamental types
is that such detailed specifications may be omitted and that a computing
system may use different representations of numbers which may be much
more suitable to its purpose. In fact, systems oriented toward scientific cal-
culations invariably choose a binary representation that is in most respects
superior to the decimal representation.

This implies, however, that a programmer cannot assume that numbers
can be read from or written onto textfiles without accompanying conversion
operations. It is customary to hide these conversion operations behind read
and write statements with arguments of numeric types. The professional
programmer, however, is aware that such statements (so-called I/O state-
ments) incorporate two distinct functions: data transfer between different
storage media and transformations of data representation. The latter may be
quite complex and time-consuming.

In the subsequent chapters of this book, read and write statements with
numeric arguments will be used according to the rules of the programming
language PASCAL. These rules allow for a certain kind of format speci-
fication to control the transformation process. The format specification
indicates the number of desired digits in the case of write statements. This
number of characters, also called “field width,” is written immediately after
the argument as follows:

write(f, x: n)

The argument x is to be written on file f; its value is converted into a sequence
of (at least) n characters; if necessary, the digits are preceded by a sign and
a suitable number of blanks.

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 45

Further details are unnecessary for understanding the later program exam-
ples of this book. Two examples of routines for the conversion of number
representation are included here (Programs 1.3 and 1.4), however, for the
sake of exhibiting the costly complexity of such operations which are usually
assumed implicitly in write statements. The two procedures represent the
conversion of real numbers from decimal representation to an arbitrary
“internal” representation and vice versa. (The constants in the headings are
determined by the properties of the floating-point number format of the
CDC 6000 computer: 11-bit binary exponent and 48-bit mantissa. The func-
tion expo (x) denotes the exponent of x.)

Program 1.3 Read a real number.

procedure readreal (var f: text; var x: real);
{ read real number x from file f}
{the following are system dependent constants}

const 148 = 281474976710656; = 2#%48}
limit = 56294995342131; {= 148 div 5}
z = 27, {= ord('0") }
lim1 = 322; { maximum exponent }
lim2 = —292; { minimum exponent }

type posint = 0..323;

var ch: char; y: real; ajie: integer;
s,85: boolean; { signs }

function ten(e: posint): real; { = 10%xe, 0<<e<<322 }
var i: integer; t: real,;

begin i := 0; ¢t := 1.0;
repeat if odd(e) then

case [of
0:¢7:=1t=* 10El;
1: ¢t := 1t * 1.0E2;
2:t:=1t * 1.0E4;
3:¢t:= 1t * 1.0ES;
4:t:= 1t * 1.0E16;
S:t:=1t* 1.0E32;
6:t:= 1t * 1.0E64;
7:t:=1t % 1.0E128;
8:t:= 1t * 1.0E256
end ;
e:=¢ediv2;i:= i+l
0;

until e
ten =
end ;

t

begin
{skip leading blanks}
while f1=""do get(f);
ch 1= f1;
if ch = '—’ then
begin s := true; get(f); ch := f1
end else
begin s := false;
if ch = '+’ then
begin get(f); ch := f1
end
end ;
if —(ch in ['0’..’9’]) then
begin message (' DIGIT EXPECTED’); halt;
end ;
a:= 0; e:= 0;
repeat if @ << [limit then a := 10%a + ord(ch)—z else e := e+1;
get(f); ch := f1
until —(ch in ['0" .. '9));
if ch = '’ then
begin { read fraction } get(f); ch := f71;
while ¢k in ['0"..’9'] do
begin if a << limit then
begin a := 10xa + ord(ch)—z; e := e—1
end ;
get(f); ch 1= f1
end
end ;
if ch = 'E’ then
begin { read scale factor } get(f); ch := f1;
i:=0;
if ch = '—' then
begin ss := true; get(f); ch := f1

end else

begin ss := false; if ch = '+’ then
begin get(f); ch := f1
end

end ;

while ¢4 in [0 .. 9] do
begin if i<</imit then begin i := 10*i 4+ ord(ch)—z end;
get(f); ch :=f1
end ;
if ss then e := e—i else ¢ := e+i
end ;

Program 1.3 (Continued)

46

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 47

if e < lim 2 then

begin a :== 0; ¢ := 0

end else
if e > lim1 then
begin message(' NUMBER TOO LARGE °); halt end;
{0 < a< 2+x49 }
if a > 148 then y := ((a+1) div 2) * 2.0 else y := aq;
if s then y :== —y;
if ¢ < 0 then x := y/ten(—e) else
if e = 0 then x :== yxten(e) else x := y ;
while (/1 ="")A(—eof(f)) do get(f);

end {readreal}

Program 1.4 Write a real number.

procedure writereal (var f: text; x: real; n: integer);
{write real number x with n characters in decimal fit.pt. format}
{the following constants depend on the underlying floating-point representa-
tion of real numbers}
const 148 = 281474976710656; {= 2x*48; 48 = size of mantissa}
z = 27; { ord('0’) }
type posint = 0..323; {range of decimal exponent}
var c,d,e,e0,el,e2,i: integer;

function ten(e: posint): real, { 10%*xe, 0<e<<322 }
var i: integer; t: real;

begin i := 0; ¢t := 1.0;
repeat if odd(e) then

case [of
0: f:= t * 1.0El;
1: ¢t := 1t * 1.0E2;
2:t:=t * 1.0E4;
3:t:= 1t * 1.0E8;
4: t :=t * 1.0El16;
S:t:=1t* 1.0E32;
6:t:= 1t * 1.0E64;
7:t:=1t* 1.0E128;
8:t:= 1t * 1.0E256
end ;
e:=c¢cediv 2;i:=i+1
until ¢ = 0;
ten 1=t

end { ten } ;

begin { at least 10 characters needed: b-+9.9E+999 }
if x = 0 then
begin repeat write(f,” '); n := n—1
until n << 1;
write(f, '0")
end else
begin
if n < 10 then n := 3 else n := n—7;
repeat write(f, ' '); n := n—1
until n < 15;
{1 < n < 15 number of digits to be printed }
begin { test sign, then obtain exponent }
if x < O then
begin write(f, '—'); x := —x
end else write (f, ' ');
e := expo (x); {e = entier(log2(abs(x)))}
if ¢ > 0 then
begin e := ex77 div 256 +1; x := x/ten(e);
if x > 1.0 then
begin x := x/10.0; e := e+1
end
end else
begin e := (e+1)*77 div 256; x := ten(—e)*x;
if x < 0.1 then
begin x := 10.0*x; ¢ := e—1
end
end ;
{01 <x < 1.0}
case n of { rounding }
2: x:= x+0.5E—2;

3: x := x+0.5E—3;
4: x := x+0.5E—4;
5: x := x+0.5E—35;
6: x := x+0.5E—6;
7: x := x+0.5E—7;
8: x := x+0.5E—38;
9: x := x+0.5E—9;
10: x := x+0.5E—10;
11: x := x+0.5E—11;
12: x := x+0.5E—12;
13: x := x+40.5E—13;
14: x := x+0.5E—14;
15: x := x+0.5E—15
end ;

Program 1.4 (Continued)

48

sec. 1.11 THE SEQUENTIAL FILE STRUCTURE 49

if x > 1.0 then
begin x := x * 0.1; e := e+1;
end ;
¢ = trunc(x,48); {= trunc(x*(2%x48))}
¢ := 10%c; d := ¢ div 148;
write(f, chr(d+z), ")
for i := 2 to n do
begin ¢ := (¢ — d*148) x 10; d := c div #48;
write(f, chr(d+z))
end ;
write(f, 'E’); e 1= e—1,;
if ¢ < O then
begin write(f, '—"); e := —e
end else write(f, '+');
el := e * 205 div 2048; €2 := e — 10%*el;
€0 := el * 205 div 2048 el := el — 10%e0;
write(f, chr(e0-+z), chr(el—l—z), chr(e2+2))
end
end
end {writereal}

Program 1.4 (Continued)

1.11.4. A File Editing Program

As an example of an application of sequential structures, we pose the fol-
lowing problem, which moreover serves to demonstrate a method of develop-
ing and explaining programs. This method is called stepwise refinement
[1.4, 1.6] and will be used to explain many algorithms throughout this book.

The problem is to develop a program which edits a text x into a text y.
Editing means deleting or replacing specific lines or inserting new lines.
Editing is governed by a sequence of editing instructions represented by the
standard text input as follows:

I, m. Insertion of text after the mth line.
D, m,n. Deletion of lines m to n.

R, m, n. Replacement of lines m to n.

E. Terminate the editing process.

Each instruction is written as a line in the standard file input, which we call

50 FUNDAMENTAL DATA STRUCTURES CHAP. 1

the instruction file. m and n are decimal line numbers, and insertion texts
are to follow the I and R instructions immediately. They are terminated by
an empty line.

We postulate that editing instructions are issued (sequenced) with strictly
increasing line numbers. This rule immediately suggests a strictly sequential
processing of the input text x. It is plain that the state of the process must be
characterized by the current position of x in terms of the number of the line
currently under investigation.

Let us now assume that the editing program is to be used in an interactive
fashion and that therefore the instruction file represents, for instance, the
data originating at a keyboard terminal. In this mode of operation it is highly
desirable that the operator receives some sort of feedback. An appropriate
and useful form of feedback is the text of that line to which the last instruc-
tion caused the process to advance. We call this line the current line. An
important consequence of the new requirement to print the current line after
each instruction is that the current line must be represented by an explicit
variable in which the line is buffered after reading it from x and before writing
it onto y. This technique is called “lookahead.” The editing program can
now be formulated as follows:

program editor (x, y, input, output);
var Ino: integer; {number of current line}
cl : line; {current line}
X,y text,
begin read instruction,
repeat interpret instruction; (1.57)
write line;
read instruction
until instruction = 'E’
end.

We now proceed to specify the various statements in greater detail.
Refining read instruction and interpret instruction, we note that an instruction
generally consists of three parts: the instruction code and two parameters.
We therefore introduce the three variables code, m, and » intended for com-
munication between the two routines.

var code,ch: char;
m,n: integer
Read instruction:

read(code,ch);
if ch = ', then read(m,ch) else m := Ino; (1.58)
if ch = ', then read(n) else n := m;

sec. 1.11

THE SEQUENTIAL FILE STRUCTURE

51

This formulation caters to the acceptance of instructions with 0, 1, or 2 pa-
rameters, substituting appropriate default values for “missing” specifications.

Interpret instruction:

copy;

if code = ‘I’ then
begin putline;
insert;

end else

if code

‘D’ then skip else

if code = 'R’ then
begin insert;

skip
end else
if code = 'E’ then copyrest else Error

(1.59)

In a second step of refinement we express the statements copy, insert,
and skip used in (1.59) in terms of operations involving single lines only,
i.e., in terms of getline and putline. Their common characteristic is the repeti-
tive structure. Copy serves to copy lines from x to y, starting with the current
line, and terminating with the mth line. Skip reads lines from x without copy-

ing up to the nth line.

Copy:

Skip:

Insert:

Copyrest:

while lno < m do

begin putline;
getline

end

while /no << n do getline

readline;

while noend do
begin putline; readline
end;

getline;

while —eof (x) do
begin putline; getline
end;

putline

(1.60)

In the third and last step of refinement we express the operations getline,
putline, readline, and writeline in terms of operations on single characters.
We note that until now all operations dealt exclusively with entire lines and

52 FUNDAMENTAL DATA STRUCTURES CHAP. 1

that no specific assumptions were made about the detailed substructure of
a line. We know that lines themselves are sequences of characters. It would
be tempting to declare the variable ¢/ (holding the current line) as a sequence

var c/: file of char

However, recall the advice that a structure with infinite cardinality should
never be used if a fundamental structure (such as an array) is adequate.
Indeed, we are well advised to use an array structure in the present case. This
is feasible, if we limit the line length to, say, 80 characters. Hence we specify

var cl: array[l .. 80] of char

The four routines use an index variable i with this array, which, in fact,
is used locally and could well be declared local to each routine; moreover,
it now becomes necessary to introduce a global variable L to denote the length
of the current line.

Getline: i := 0; Ino := Ino + 1;
while —coln(x) do
begin i := i+1; read (x, cl[i])
end ;
L := i; readln(x)

Putline: i := 0;
while | < L do
begin i := i+1; (write y, cl[i])
end ;
writeln(y)
Readline: i := 0;
while —eoln(input) do
begin i := i+1; read(cl[i])
end ;
readin

(1.61)

Writeline: i := 0; write (Ino);
while | < L do
begin i := i+1; write(cl[i])
end ;
writeln

The condition noend in the routine insert is now readily expressed as
L0

This concludes the development of this file editing program.

CHAP. 1 EXERCISES 53

1.1.

1.2

1.3.

1.4.

1.5.

1.6.

1.7.
1.8.

1.9.

1.10.

1.11.

EXERCISES

Assume that the cardinalities of the standard types integer, real, and char
are denoted by c;, ¢z, and ¢c. What are the cardinalities of the following
data types defined as examples in this chapter: sex, Boolean, weekday,
letter, digit, officer, row, alfa, complex, date, person, coordinate, charset,
tapestatus?

How would you represent variables of the types listed in Exercise 1.1:
(a) In the store of your computer?

(b) In FORTRAN?

(c) In your favorite programming language?

Which are the instruction sequences (on your computer) for the following:
(a) Fetch and store operations for elements of packed records and arrays?
(b) Set operations, including the test for membership ?

Can the correct use of variant records be checked at run time? Can it even
be verified at compile time?

What are the reasons for defining certain sets of data as sequential files
instead of arrays?

Assume that you are to implement sequential files as defined in Sec. 1.11
on a computer with a very large primary store. You are allowed to impose
the restriction that files will never exceed a certain length L. Hence, you can
represent files in terms of arrays.

Describe a possible implementation, including the chosen data representa-
tion and procedures for the elementary file operators get, put, reset, and
rewrite, which are defined by a set of axioms in Sec. 1.11.

Apply Exercise 1.6 to the case of segmented files.

Given is a railway timetable listing the daily services on several lines of a
railway system. Find a representation of these data in terms of arrays,
records, or files, which is suitable for lookup of arrival and departure times
given a certain station and desired direction of the train.

Given a text T in the form of a file, and lists of a small number of words in
the form of two arrays A and B. Assume that words are short arrays of
characters of a small and fixed maximum length.

Write a program that transforms the text 7 into a text S by replacing each
occurrence of a word A; by its corresponding word B;.

Which adjustments—redefinition of constants, etc.—are necessary to adapt
Programs 1.3 and 1.4 to your available computer?

Write a procedure similar to Program 1.4 whose heading is
procedure writereal (var f: text; x: real; nm: integer);

It is supposed to transform the value x into a sequence of at least # charac-
ters (to be appended to file f) representing x in decimal, fixed-point form

54

1.12.
1.13.

1.14.

FUNDAMENTAL DATA STRUCTURES CHAP. 1

with m digits following the decimal point. If necessary, the number is to be
preceded by a suitable number of blanks and/or a sign.

Rewrite the text editor of Sec. 1.11.4 in the form of a complete program.

Compare the following three versions of the binary search with (1.17).
Which of the three programs are correct? Which ones are more efficient?
We assume the following variables, and a constant N > 0:

var i,j,k: integer;
a: array[l .. N]of T;
x: T
Program A:
i:=1;j:= N;
repeat k := (i+j) div 2;
if a[k] < xtheni:= kelsej:= k
until (a[k]l=x) V (i>))
Program B:
i:=1;j:= N;
repeat k := (i+j) div 2;
if x < alk]thenj := k—1;
if alk] < xtheni := k+1
until i > j
Program C:
i:=1;j:= N;
repeat k := (i+j) div 2;
if x < alk]thenj := kelsei := k+1
until i > j

Hint: All programs must terminate with a[k] = x, if such an element
exists, or alk] #« x, if there exists no element with value x.

A company organizes a poll to determine the success of its products. Its
products are records and tapes of hits, and the most popular hits are to be
broadcast in a hit parade. The polled population is to be divided into four
categories according to sex and age (say, less or equal to 20, and older than
20). Every person is asked to name five hits. Hits are identified by the numbers
1 to N (say, N = 30). The results of the poll are represented by a file.

type hit = 1..N;
sex = (male, female);

response =
record name, firstname: alfa;
s: sex;
age: integer;
choice: array [1 .. 5] of hit
end ;

var poll. file of response

CHAP. 1 REFERENCES 55

Hence, each file element represents a respondent and lists his name, first
name, sex, age, and his five preferred hits according to priority. This file is
the input to a program which is supposed to compute the following results:

1. A list of hits in the order of their popularity. Each entry consists of the
hit number and the number of times it was mentioned in the poll. Hits
that were never mentioned are omitted from the list.

2. Four separate lists with the names and first names of all respondents
who had mentioned in first place one of the three hits most popular in
their category.

The five lists are to be preceded by suitable titles.

REFERENCES

DaHL, O. J., DUKSTRA, E. W., and Hoarg, C. A. R., Structured Programming,
(New York: Academic Press, 1972), pp. 155-65.

Hoagreg, C. A. R., “Notes on Data Structuring,” in Structured Programming,
Dahl, Dijkstra, and Hoare, pp. 83-174.

JENSEN, K. and WIRTH, N., “PASCAL, User Manual and Report,” Lecture
Notes in Computer Science, Vol. 18 (Berlin: Springer-Verlag, 1974).

WIirTH, N., “Program Development by Stepwise Refinement,” Comm. ACM,
14, No. 4 (1971), 221-27.

, “The Programming Language PASCAL,” Acta Informatica, 1,
No. 1 (1971), 35-63.

, “On the Composition of Well-Structured Programs,” Computing

Surveys, 6, No. 4, (1974) 247-59.

2 SORTING

2.1. INTRODUCTION

The primary purpose of this chapter is to provide an extensive set of
examples illustrating the use of the data structures introduced in the preced-
ing chapter and to show how the choice of structure for the underlying data
profoundly influences the algorithms that perform a given task. Sorting is
also a good example to show that such a task may be performed according to
many different algorithms, each one having certain advantages and disad-
vantages that have to be weighted against each other in the light of the
particular application.

Sorting is generally understood to be the process of re-arranging a given
set of objects in a specific order. The purpose of sorting is to facilitate the
later search for members of the sorted set. As such it is an almost universally
performed, fundamental activity. Objects are sorted in telephone books, in
income tax files, in tables of contents, in libraries, in dictionaries, in ware-
houses, and almost everywhere that stored objects have to be searched and
retrieved. Even small children are taught to put their things “in order,” and
they are confronted with some sort of sorting long before they learn anything
about arithmetic.

Hence, sorting is a relevant and essential activity, particularly in data
processing. What else would be easier to sort than “data”™! Nevertheless,
our primary interest in sorting is devoted to the even more fundamental
techniques used in the construction of algorithms. There are not many
techniques that do not occur somewhere in connection with sorting algo-
rithms. In particular, sorting is an ideal subject to demonstrate a great
diversity of algorithms, all having the same purpose, many of them being

56

SEC. 2.1 INTRODUCTION 57

optimal in some sense, and most of them having advantages over others.
It is therefore an ideal subject to demonstrate the necessity of performance
analysis of algorithms. The example of sorting is moreover well-suited for
showing how a very significant gain in performance may be obtained by the
development of sophisticated algorithms when obvious methods are readily
available.

The dependence of the choice of an algorithm on the structure of the data
to be processed—an ubiquitous phenomenon—is so profound in the case
of sorting that sorting methods are generally classified into two categories,
namely, sorting of arrays and sorting of (sequential) files. The two classes
are often called internal and external sorting because arrays are stored in the
fast, high-speed, random-access “internal” store of computers and files are
conveniently located on the slower, but more spacious “external” stores
based on mechanically moving devices (disks and tapes). The importance of
this distinction is obvious from the example of sorting numbered cards.
Structuring the cards as an array corresponds to laying them out in front of
the sorter so that each card is visible and individually accessible (see Fig. 2.1).

Fig. 2.1 Array sorting.

Structuring the cards as a file, however, implies that from each pile only
the card on the top is visible (see Fig. 2.2). Such a restriction will evidently
have serious consequences on the sorting method to be used, but it is un-
avoidable if the number of cards to be laid out is larger than the available
table.

Before proceeding, we introduce some terminology and notation to be
used throughout this chapter. We are given items

al,az’.-.,an

58 SORTING CHAP. 2

VWA T

)
Fig. 2.2 File sorting.

Sorting consists of permuting these items into an order
ak,, Ay o o o5 A,
such that, given an ordering function f,

fla) < fla) <--- < fla,) @D

Ordinarily, the ordering function is not evaluated according to a specified
rule of computation but is stored as an explicit component (field) of each
item. Its value is called the key of the item. As a consequence, the record
structure is particularly well-suited to represent the items a,. We therefore
define a type item to be used in all subsequent sorting algorithms:

type item = record key: integer;
{other components declared here} 2.2
end

The “other components” represent relevant data about the items in the
collection; the key merely assumes the purpose of identifying the items.
As far as our sorting algorithms are concerned, however, the key is the
only relevant component, and there is no need to define any particular
remaining components. The choice of integer as the key type is somewhat
arbitrary. Evidently, any type on which a total ordering relation is defined
could be used just as well.

A sorting method is called stable if the relative order of items with equal
keys remains unchanged by the sorting process. Stability of sorting is often

SEC. 2.2 SORTING ARRAYS 59

desirable if items are already ordered (sorted) according to some secondary
keys, i.e., properties not reflected by the (primary) key itself.

This chapter is not to be regarded as a comprehensive survey in sorting
techniques. Rather, some selected, specific methods are exemplified in
greater detail. For a thorough treatment of sorting, the interested reader is
referred to the excellent and comprehensive compendium by D. E. Knuth
[2-7] (see also Lorin [2-10]).

2.2. SORTING ARRAYS

The predominant requirement that has to be made for sorting methods
on arrays is an economical use of the available store. This implies that the
permutation of items which brings the items into order has to be performed
in situ and that methods which transport items from an array a to a result
array b are intrinsically of minor interest. Having thus restricted our choice
of methods among the many possible solutions by the criterion of economy
of storage, we proceed to a first classification according to their efficiency,
i.e., their economy of time. A good measure of efficiency is obtained by
counting the numbers C of needed key comparisons and M of moves (trans-
positions) of items. These numbers are functions of the number » of items to
be sorted. Whereas good sorting algorithms require in the order of n-logn
comparisons, we first discuss several simple and obvious sorting techniques,
called straight methods, all of which require in the order n?* comparisons of
keys. There are three good reasons for presenting straight methods before
proceeding to the faster algorithms.

1. Straight methods are particularly well-suited for elucidating the charac-
teristics of the major sorting principles.

2. Their programs are easy to understand and are short. Remember that
programs occupy storage as well!

3. Although sophisticated methods require fewer operations, these opera-
tions are usually more complex in their details; consequently, straight
methods are faster for sufficiently small », although they must not be
used for large n.

Sorting methods which sort items in situ can be classified into three
principal categories according to their underlying method:

1. Sorting by insertion.
2. Sorting by selection.
3. Sorting by exchange.

60 SORTING CHAP. 2

These three principles will now be examined and compared. The programs
operate on the variable @ whose components are to be sorted in situ and refer
to the data types item (2.2) and index, defined as

type index = 0..n;

var a: array[l .. n] of item 2:3)

2.2.1. Sorting by Straight Insertion

This method is widely used by card players. The items (cards) are con-
ceptually divided into a destination sequence a, ...a,_; and a source se-
quence a; . . . a,. In each step, starting with i = 2 and incrementing i by unity,
the ith element of the source sequence is picked and transferred into the
destination sequence by inserting it at the appropriate place.

Initial Keys 44 f_§ 12 42 94 18 06 67
i=2 44 55 12 42 94 18 06 67
i=3 12 44 55 4 94 18 06 67
i=4 12 42 44 55 g_‘,i 18 06 67
i=5 12 42 44 55 94 18 06 67
i=6 12 is 42 44 55 94 06 67
i=1 06 12 18 42 44 55 94 67

i=38 06 12 18 42 44 55 &7 94

Table 2.1 A Sample Process of Straight Insertion Sorting.

The process of sorting by insertion is shown in an example of eight
numbers chosen at random (see Table 2.1). The algorithm of straight inser-
tion is

for i := 2tondo
begin x := ali];
“insert x at the appropriate place in a, ... a;
end

In the process of actually finding the appropriate place, it is convenient to
alternate between comparisons and moves, i.e., to let x “sift down” by
comparing x with the next item a,, and either inserting x or moving a, to the
right and proceeding to the left. We note that there are two distinct condi-
tions that may cause the termination of the “sifting down” process:

1. Anitem q; is found with a key less than the key of x.
2. The left end of the destination sequence is reached.

SEC. 2.2 SORTING ARRAYS 61

This typical case of a repetition with two termination conditions brings the
well-known sentinel technique to our attention. It is easily applied to this
case by posting a sentinel item a, = x. (Note that this must be included by
extending the index range in the declaration of a to 0. . n.) The completed
algorithm is formulated in Program 2.1.

procedure straightinsertion;
var i,j: index; Xx: item;
begin
fori:= 2tondo
begin x := d[i]; a[0] := x; j := i—1;
while x .key << a[j] .key do
begin a[j+1] := aljl; j := j—1;
end ;
alj+1] := x
end
end

Program 2.1 Sorting by Straight Insertion.

Analysis of straight insertion. The number C; of key comparisons in
the ith sift is at most / — 1, at least 1, and—assuming that all permutations
of the n keys are equally probable—i/2 in the average. The number M, of
moves (assignments of items) is C; + 2 (including the sentinel). Therefore,
the total numbers of comparisons and moves are

Coin =n — 1 M = 2(” - 1)
Coe =3 +n—2) M, =1i0n*+ 9 — 10) (2.4)
Cmax = %(nz + n) - 1 Mmﬂx = %(”2 + 3” - 4)

The least numbers occur if the items are originally in order; the worst
case occurs if the items are originally in reverse order. In this sense, sorting
by insertion exhibits a truly natural behavior. It is plain that the given algo-
rithm also describes a stable sorting process: it leaves the order of items with
equal keys unchanged.

The algorithm of straight insertion is easily improved by noting that the
destination sequence a, . .. a,_,, in which the new item has to be inserted,
is already ordered. Therefore, a faster method of determining the insertion
point can be used. The obvious choice is a binary search that samples the
destination sequence in the middle and continues bisecting until the inser-
tion point is found. The modified sorting algorithm is called binary insertion,
and is shown in Program 2.2.

62 SORTING CHAP. 2

procedure binaryinsertion;;
var i,j,Lr,m: index; x: item;
begin
fori := 2tondo
begin x := afi}; | :=1; r := i—1;
while / < r do
begin m := (I+r) div 2;
if x .key << a[m] .key thenr := m—1 else! := m—+1

end ;
for j := i—1 downto / do a[j+1] := d[j];
all]l := x;

end

end
Program 2.2. Sorting by Binary Insertion.

Analysis of binary insertion. The insertion position is found if a, .key <
x .key < a, .key. Thus, the search interval must in the end be 1; and this
involves halving the interval of i keys [log, i] times. Thus,

C= Z.:I [log, i
We approximate this sum by the integral
f log x dx = x(log x — ¢)| = n(logn —¢) + ¢ 2.5)
1 1

where ¢ =loge = 1/In2 == 1.44269 The number of comparisons is
essentially independent of the initial order of the items. However, because of
the truncating character of the division involved in bisecting the search inter-
val, the true number of comparisons needed with i items may be up to 1 higher
than expected. The nature of this bias is such that insertion positions at the
low end are on the average located slightly faster than those at the high end,
thereby favoring those cases in which the items are originally highly out of
order. In fact, the minimum number of comparisons is needed if the items
are initially in reverse order and the maximum if they are already in order.
Hence, this is a case of unnatural behavior of a sorting algorithm.

C=n(logn — loge + 0.5)

Unfortunately, the improvement obtained by using a binary search method
applies only to the number of comparisons but not to the number of neces-
sary moves. In fact, since moving items, i.e., keys and associated information,
is in general considerably more time-consuming than comparing two keys,
the improvement is by no means drastic: the important term M is still of the
order n*. And, in fact, re-sorting the already sorted array takes more time

SEC. 2.2 SORTING ARRAYS 63

than does straight insertion with sequential search! This example demon-
strates that an “obvious improvement” often has much less drastic con-
sequences than one is first inclined to estimate and that in some cases (which
do occur) the “improvement” may actually turn out to be a deterioration.
After all, sorting by insertion does not appear to be a very suitable method
for digital computers: insertion of an item with the subsequent shifting of an
entire row of items by a single position is uneconomical. One should expect
better results from a method in which moves of items are only performed
upon single items and over longer distances. This idea leads to sorting by
selection.

2.2.2 Sorting by Straight Selection

This method is based on the following principle:

1. Select the item with the least key.
2. Exchange it with the first item a,.

Then repeat these operations with the remaining » — 1 items, then with
n — 2 items, until only one item—the largest—is left. This method is shown
on the same eight keys as in Table 2.1.

initial keys 44 55 12 42 94 18 06 67
06 55 12 42 94 18 a4 67
06 12 55 42 94 18 44 67
06 12 18 42 94 55 44 67
06 12 18 42 94 55 44 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 94 67
06 12 18 42 44 55 67 94

Table 2.2 A Sample Process of Straight Selection Sorting.

The program is formulated as follows:

fori:= lton—1 do
begin “assign the index of the least item of ai]. . . a[n] to k”;
“exchange «, and a,”
end

This method, called straight selection, is in some sense the opposite of
straight insertion: Straight insertion considers in each step only the one
next item of the source sequence and all items of the destination array to find
the insertion point; straight selection considers all items of the source array

64 SORTING CHAP. 2

to find the one with the least key and to deposit it as the one next item of the
destination sequence. The entire program of straight selection is given in
Program 2.3.

procedure straightselection;
var i,j,k: index; x: item;
begin for i := 1 to n—1 do
begin k := i; x := dali];
forj:= i+1 to n do
if aj] .key < x .key then
begin k := j; x := 4a[j]
end ;
alk] := alil; d[i] := x;
end
end

Program 2.3 Sorting by Straight Selection.
Analysis of straight selection. Evidently, the number C of key compari-

sons is independent of the initial order of keys. In this sense, this method
may be said to behave less naturally than straight insertion. We obtain

C=1%n*—n
The number M of moves is at least
My, =30n—1) (2.6)

in the case of initially ordered keys and at most
2
M . = trunc(%) +3n—1)

if initially the keys are in reverse order. The average M,,, is difficult to
determine in spite of the algorithm’s simplicity. It depends on the number
of times that k; is found to be less than all preceding numbers k, ... k;_,
when scanning a sequence of numbers k, . .. k,. This value, averaged over
all n! permutations of n keys is

H,—1

where H, is the nth harmonic number

.7

3|—

Hy=1f 4 f oot

(cf. Knuth, Vol. 1, pp. 95-99).
H, can be expressed as

1
H,,=lnn—l—y+%l—m+--- 2.8)

SEC. 2.2 SORTING ARRAYS 65

where p = 0.577216 . . . is Euler’s constant. For sufficiently large », we may
ignore the fractional terms and therefore approximate the average number
of assignments in the ith pass as

Fo=Ini+y+1

The average number of moves M,,, in a selection sort is then the sum of
F, with i ranging from 1 to n.

MM:§E=M+D+gmi

By further approximating the sum of discrete terms by the integral
f Inxdx=x(Inx —1)| =nlnn—n+41
1 1

we obtain an approximate value
M,.=n(nn+yp) 2.9

We may conclude that in general the algorithm of straight selection is to be
preferred over straight insertion, although in the cases in which keys are
initially sorted or almost sorted, straight insertion is still somewhat faster.

2.2.3 Sorting by Straight Exchange

The classification of a sorting method is seldom entirely clear-cut. Both
previously discussed methods can also be viewed as exchange sorts. In this
section, however, we present a method in which the exchange of two items
is the dominant characteristic of the process. The subsequent algorithm of
straight exchanging is based on the principle of comparing and exchanging
pairs of adjacent items until all items are sorted.

As in the previous methods of straight selection, we make repeated passes
over the array, each time sifting the least item of the remaining set to the left
end of the array. If, for a change, we view the array to be in a vertical instead
of a horizontal position, and—with the help of some imagination—the items

o ™ < w © ~ [ee]
I I [} [} 1 n 1

44 06 06 06 06 06 06 06
55 44 12 12 12 12 12 12
12 55 j 44 18 18 18 18 18
42 12 55 j 44 42 42 42 42
94 42 18 55 j 44 — 44 44 44
18 94 j 42 42 55 556 —= 55 55

06 18 94_{> 67 67 67 67 — 67
67 67 67 94 94 94 94 94

Table 2.3 A Sample of Bubblesorting.

66 SORTING CHAP. 2

as bubbles in a water tank with “weights” according to their keys, then each
pass over the array results in the ascension of a bubble to its appropriate
level of weight (see Table 2.3). This method is widely known as the Bub-
blesort. Its simplest form is shown in Program 2.4.

procedure bubblesort ;
var [,j: index; Xx: item;
begin for i := 2 to n do
begin for j := n downto i do
if a[j—1] .key > a[j] .key then
begin x := a[j—1]; a[j—1] := dlj]; a[j] := x
end
end
end {bubblesort}

Program 2.4 Bubblesort

This algorithm easily lends itself to some improvements. The example in
Table 2.3 shows that the last three passes have no effect on the order of the
items because the items are already sorted. An obvious technique for improv-
ing this algorithm is to remember whether or not any exchange had taken
place during a pass. A last pass without further exchange operations is there-
fore necessary to determine that the algorithm may be terminated. However,
this improvement may itself be improved by remembering not merely the
fact that an exchange took place, but rather the position (index) of the last
exchange. For example, it is plain that all pairs of adjacent items below this
index k are in the desired order. Subsequent scans may therefore be ter-
minated at this index instead of having to proceed to the predetermined lower
limit /. The careful programmer will, however, notice a peculiar asymmetry:
A single misplaced bubble in the “heavy” end of an otherwise sorted array
will sift into order in a single pass, but a misplaced item in the “light” end
will sink toward its correct position only one step in each pass. For example,
the array
12 18 42 44 S5 67 94 06

will be sorted by the improved Bubblesort in a single pass, but the array
94 06 12 18 42 44 55 67

will require seven passes for sorting. This unnatural asymmetry suggests a
third improvement: alternating the direction of consecutive passes. We
appropriately call the resulting algorithm Shakersort. Its behavior is illus-
trated in Table 2.4 by applying it to the same eight keys that were used in
Table 2.3.

)

SEC. 2.2 SORTING ARRAYS 67

procedure shakersort;
var jk,Lr: index; x: item;
begin / := 2; r:= n; k := n;
repeat
for j := r downto / do
if a[j—1] .key > a[j] .key then
begin x := a[j—1]; a[j—1] := a[j]; alj] := x;
k:=j
end ;
[:= k+1;
for j := [to r do
if a[j—1] .key > al[j] .key then
begin x := a[j—1]; a[j—1] := a[j]; alj] := x;
k:=j
end ;
r:=k—1,;
until / > r
end {shakersort}

Program 2.5 Shakersort.

1=2 3 3 4 4
r=8 8 7 7 4
} v } !)
4 —=06 06 06 06
55 44 44 12 12
12 55 12——,_> 18
42 2 1

44
12 1 4 8 1 42
94 42 55 42 a4
18 94 18 55 55
06 — 18 67 67 67
67 67 L 94 94 94
Table 2.4 An Example of Shakersort.
Analysis of Bubblesort and Shakersort. The number of comparisons in
the straight exchange algorithm is

C=14n*—n (2.10)

and the minimum, average, and maximum numbers of moves (assignments
of items) are

Mmin = 03 Mave = %(nz - n)’ Mmax = %(nz - n) (2‘11)

The analysis of the improved methods, particularly that of Shakersort,
is involved. The least number of comparisons is C,;, =#n — 1. For the

68 SORTING CHAP, 2

improved Bubblesort, Knuth arrives at an average number of passes pro-
portional to n — k,./n, and an average number of comparisons propor-
tional to 4[n*> — n(k, + In n)]. But we note that all improvements mentioned
above do in no way affect the number of exchanges; they only reduce the
number of redundant double checks. Unfortunately, an exchange of two
items is generally a much more costly operation than a comparison of keys;
our clever improvements therefore have a much less profound effect than one
would intuitively expect.

This analysis shows that the exchange sort and its minor improvements
are inferior to both the insertion and the selection sorts; and in fact, the
Bubblesort has hardly anything to recommend it except its catchy name.
The Shakersort algorithm is used with advantage in those cases in which it
is known that the items are already almost in order—a rare case in practice.

It can be shown that the average distance that each of the n items has to
travel during a sort is n/3 places. This figure provides a clue in the search for
improved, i.e., more effective sorting methods. All straight sorting methods
essentially move each item by one position in each elementary step. There-
fore, they are bound to require in the order »n% such steps. Any improvement
must be based on the principle of moving items over greater distances in
single leaps.

Subsequently, three improved methods will be discussed, namely, one for
each basic sorting method : insertion, selection, and exchange.

2.2.4 Insertion Sort by Diminishing Increment

A refinement of the straight insertion sort was proposed by D. L. Shell
in 1959. The method is explained and demonstrated on our standard example
of eight items (see Table 2.5). First, all items which are four positions apart
are grouped and sorted separately. This process is called a 4-sort. In this
example of eight items, each group contains exactly two items. After this
first pass, the items are regrouped into groups with items two positions apart
and then sorted anew. This process is called a 2-sort. Finally, in a third pass,
all items are sorted in an ordinary sort or 1-sort.

One may at first wonder if the necessity of several sorting passes, each of
which involves all items, will not introduce more work than it saves. How-
ever, each sorting step over a chain involves either relatively few items or
the items are already quite well ordered and comparatively few re-arrange-
ments are required.

It is obvious that the method results in an ordered array, and it is fairly
obvious that each pass will profit from previous passes (since each i-sort
combines two groups sorted in the preceding 2i-sort). It is also obvious that
any sequence of increments will be acceptable, as long as the last one is
unity, because in the worst case the last pass will do all the work. It is, however,

SEC. 2.2 SORTING ARRAYS 69

44 55 12 42 94 18 06 67

S~~~ >l L 7S

4-sort yields
44 18 06 42 94 55 12 67
2-sort yields

06 18 12 42 44 55 94 67
Nl A A A A A AV

1-sort yields

06 12 18 42 44 55 67 94

Table 2.5 An Insertion Sort with Diminishing Increments.

much less obvious that the method of diminishing increments yields even
better results with increments other than powers of 2.

The program is therefore developed without relying on a specific se-
quence of increments. The ¢ increments are denoted by

hy,hyy oo, h,
with the conditions,

ho=1, h., <h (2.12)

Each hA-sort is programmed as a straight insertion sort using the sentinel
technique to provide a simple termination condition for the search of the
insertion place.

It is plain that each sort needs to post its own sentinel and that the
program to determine its position should be made as simple as possible.
The array a therefore has to be extended not only by a single component
a[0], but by 4, components, such that it is now declared as

a: array[—h, .. n] of item

The algorithm is described by the procedure called Shellsort [2.11] in Pro-
gram 2.6 for t = 4.

Analysis of Shellsort. The analysis of this algorithm poses some very
difficult mathematical problems, many of which have not yet been solved.
In particular, it is not known which choice of increments yields the best
results. One surprising fact, however, is that they should not be multiples
of each other. This will avoid the phenomenon evident from the example
given above in which each sorting pass combines two chains that before
had no interaction whatsoever. It is indeed desirable that interaction between

70 SORTING CHAP. 2

procedure shellsort;
const ¢t = 4;
var 1,j,k,s: index; x: item; m: 1..t;
h: array [1..1¢] of integer;
begin A[l1] := 9; A[2] := 5; A[3] := 3; h4] := 1;
for m:= 1 to ¢t do
begin k := h[m]; s := —k; {sentinel position}
for i := k+1 to n do
begin x := ali]; j := i—k;
if s=0 then s := —k; 5 := s5s+1; a[s] := x;
while x .key < a[j] .key do
begin alj+k] := alj]; j := j—k
end ;
alj+k] := x
end
end
end

Program 2.6. Shellsort.

various chains takes place as often as possible, and the following theorem
holds:

If a k-sorted sequence is i-sorted, then it remains k-sorted.

Knuth [2.8] indicates evidence that a reasonable choice of increments
is the sequence (written in reverse order)

1,4,13,40, 121, . ..

where h,_, = 3h, + 1, h, = 1, and ¢t = |log; n] — 1. He also recommends
the sequence
1,3,7,1531,...

where h,_, =2h, + 1,h, =1, and ¢ = |log, n] — 1. For the latter choice,
mathematical analysis yields an effort proportional to n!-?2 required for
sorting n items with the Shellsort algorithm. Although this is a significant
improvement over n?, we will not expound further on this method, since
even better algorithms are known.

2.2.5 Tree Sort

The method of sorting by straight selection is based on the repeated selec-
tion of the least key among n items, among the remaining n — 1 items, etc.
Clearly, finding the least key among » items requires n — 1 comparisons, and
finding it among n — 1 items needs n — 2 comparisons. So how can this
selection sort possibly be improved? It can only be improved by retaining

SEC. 2.2 SORTING ARRAYS 71

from each scan more information than just the identification of the single
least item. For instance, with n/2 comparisons it is possible to determine the
smaller key of each pair of items, with another n/4 comparisons the smaller
of each pair of such smaller keys can be selected, and so on. Finally, with
only n — 1 comparisons, we can construct a selection tree as shown in Fig.
2.3 and identify the root as the desired least key [2.2].

12/06\
7\, I\,
N ANYA VAN

55 12 18 06
Fig. 2.3 Repeated selection between two keys.

The second step now consists of descending down along the path marked
by the least key and eliminating it by successively replacing it by either
an empty hole (or the key —oo) at the bottom or by the item at the alter-
native branch at intermediate nodes (see Figs. 2.4 and 2.5). Again, the item
emerging at the root of the tree has the (now second) smallest key and can
be eliminated. After n such selection steps, the tree is empty (i.e., full of
holes), and the sorting process is terminated. It should be noted that each of

/D
/”\ N
/\ /\ /\ /\

44 55 12 42 94 18 |:| 67

Fig. 2.4 Selecting the least key.
12

12/\
RN /\
/ N/ \ /\ /\

44 55 12 42 94 18 I:I 67

Fig. 2.5 Refilling the holes.

72 SORTING CHAP. 2

the 7 selection steps requires only log, » comparisons. Therefore, the total
selection process requires only on the order of n-log n elementary operations
in addition to the n steps required by the construction of the tree. This is a
very significant improvement over the straight methods requiring n? steps,
and even over Shellsort that requires n'-2 steps.

Naturally, the task of bookkeeping has become more elaborate, and
therefore the complexity of individual steps is greater in the tree sort method;
after all, in order to retain the increased amount of information gained from
the initial pass, some sort of tree structure has to be created. Our next task
is to find methods of organizing this information efficiently.

Of course, it would seem particularly desirable to eliminate the need for
the holes (—o) that in the end populate the entire tree and are the source
of many unnecessary comparisons. Moreover, a way should be found to
represent the tree of n items in n units of storage, instead of in 2n — 1 units
as shown above. These goals are indeed achieved by a method called Heapsort
by its inventor J. Williams [2-14]; it is plain that this method represents a
drastic improvement over more conventional tree sorting approaches.

A heap is defined as a sequence of keys

hl’ hl+19 e hr
such that

hi S h2i

hy < by
for all i =1/...r/2. If a binary tree is represented as an array as shown in
Fig. 2.6, then it follows that the sort trees in Figs. 2.7 and 2.8 are heaps, and
in particular that the element /4, of a heap is its /east element.

h, = min(h, ... h,)

Let us now assume that a heap with elements 4,,, ... A, is given for some
values / and r, and that a new element x has to be added to form the extended
heap 4, . . . h,. Take, for example, the initial heap 4, . . . A, shown in Fig. 2.7
and extend the heap “to the left” by an element 4, = 44. A new heap is

h,

/\
/\ N
/\ /\ /\ /\

h13 14 h15

(2.13)

Fig. 2.6 Array A viewed as binary tree.

SEC. 2.2 SORTING ARRAYS 73

42/ \06

55 94 18 12

Fig. 2.7 Heap with seven elements.

(08)

42 (12)
55/ \\94 18 (44)

Fig. 2.8 Key 44 sifting through the heap.

obtained by first putting x on top of the tree structure and then by letting
it “sift down” along the path of the smaller comparands, which at the same
time move up. In the given example the value 44 is first exchanged with 06,
then with 12, and thus forming the tree shown in Fig. 2.8. We now formulate
this sifting algorithm as follows: 7, j are the pair of indices denoting the items
to be exchanged during each sift step. The reader is urged to convince himself
that the proposed method of sifting actually preserves the conditions (2.13)
that define a heap.

A neat way to construct a heap in situ was suggested by R. W. Floyd.
It uses the sifting procedure shown in Program 2.7. Given is an array
hy...h,; clearly, the elements 4,,, . . . 4, form a heap already, since no two
indices I, j are such that j = 2i (or j = 2i + 1). These elements form what
may be considered as the bottom row of the associated binary tree (see Fig.

procedure sift(l,r: index);
label 13;
var i,j: index; x: item;
begin i := [; j := 2%i; x := dli];
while j < r do
begin if j << r then
if a[j] .key > a[j+1] .key then j := j+1;
if x .key < a[j] .key then goto 13;
ali] := aljl; i := j; j := 2xi {sift}
end;
13: afi] := x
end
Program 2.7 Sift.

74 SORTING

CHAP. 2

44 55 12 42 94 18 06 67
44 55 12 42 94 18 06 67
44 55 0‘6 42 94 18 1‘2 67
44 4‘2 06 35 94 18 12 67
OE 42 12‘ 55 94 18 4:1 67

Table 2.6 Constructing a Heap.

2.6) among which no ordering relationship is required. The heap is now
extended to the left where in each step a new element is included and properly
positioned by a sift. This process is illustrated in Table 2.6 and yields the
heap shown in Fig. 2.6. Consequently, the process of generating a heap of n
elements A, . .. h, in situ is described as follows:

[:= (ndiv2 + I;

while / > 1 do
begin [:= [—1; sift(l,n)
end

In order to obtain the elements sorted, » sift steps have now to be executed,
where after each step the subsequent item may be picked off the top of the
heap. Once more, there arise the questions of where to store the emerging top
elements and whether or not an in situ sort would be possible. Of course,
there is such a solution! In each step take the last component (say x) off the
heap, store the top element of the heap in the now free location of x, and let
x sift down into its proper position. The necessary n — 1 steps are illustrated
on the heap of Table 2.7. The process is described with the aid of the sift

06 42 12 55 94 18 44 67
12 42 18 56 9
; 18 4 67 44 06
18 42 as 55 94 67 12 06
42 55 44 67 94 | 18 12 06
A [9Y 4 j
44 55 94 67 42 18 12 06
[S
56 67 94 44 42 18 12 06
4 _ 4
67 94 56 44 42 18 12 06
94 67 55 44 42 18 12 06

Table 2.7 Example of a Heapsort Process.

SEC. 2.2 SORTING ARRAYS 75

procedure (Program 2.7) as follows:

r = n;
while r > 1 do
begin x := a[l]; a[l] := dal[r]; a[r] := x;
r = r—1; sift(L,r)
end

The example of Table 2.7 shows that the resulting order is actually inverted.
This, however, can easily be remedied by changing the direction of the order-
ing relations in the sift procedure. This results in the procedure Heapsort

shown in Program 2.8.

procedure heapsort;
var Lr: index; x: item;

procedure sift;
label 13;
var I,j: index;
begin i := [; j := 2xi; x := a[il;
while j < r do
begin if j < r then
if a[j] .key < a[j+1] .key then j := j+1;
if x .key > a[j] .key then goto 13;
ali] 1= aljl; i :=j;j:= 2+
end ;
13: afi] := x
end ;
begin / := (n div 2) + 1; r := n;
while / > 1 do
begin / := I—1; sift

end ;
while r > 1 do
begin x := a[l]; a[l] := a[r]; ar] := x;
r:= r—1; sift
end

end {heapsort}
Program 2.8 Heapsort.

Analysis of Heapsort. At first sight it is not evident that this method of
sorting provides good results. After all, the large items are first sifted to the
left before finally being deposited at the far right. Indeed, the procedure is
not recommended for small numbers of items, such as shown in the example.

76 SORTING CHAP. 2

However, for large n, Heapsort is very efficient, and the larger the n, the better
it is—even compared to Shellsort.

In the worst case, there are n/2 sift steps necessary, sifting items through
log(n/2), log(n/2 — 1), ..., log(n — 1) positions, where the logarithm is
taken to the base 2 and truncated to the next lower integer. Subsequently,
the sorting phase takes n — 1 sifts, with at most log(n — 1), log(n — 2),
..., 1 moves. In addition, there are n — 1 moves for stashing the sifted
item away at the right. This argument shows that Heapsort takes of the order
of n-log(n) steps even in the worst case. This excellent worst-case performance
is one of the strongest qualities of Heapsort.

It is not at all clear in which case the worst (or the best) performance may
be expected. But generally Heapsort seems to like initial sequences in which
the items are more or less sorted in the inverse order and therefore displays
an unnatural behavior. Evidently, the heap creation phase requires zero
moves if the inverse order is present. For the eight items of our example, the
following initial sequences result in the minimal and maximal number of
moves:

M ;. = 13 for the sequence

94 67 44 55 12 42 18 6
M., = 24 for the sequence
18 42 12 44 6 55 67 94

The average number of moves is approximately 47-log n, and the deviations
from this value are relatively small.

2.2.6 Partition Sort

After having discussed two advanced sorting methods based on the
principles of insertion and selection, we introduce a third improved method
based on the principle of exchanging. In view of the fact that Bubblesort
was on the average the least effective of the three straight sorting algorithms,
a relatively significant improvement factor should be expected. Still, it comes
as a surprise that the improvement based on exchanges to be discussed here
yields the best sorting method on arrays known so far. Its performance is so
spectacular that its inventor, C. A. R..Hoare, dubbed it Quicksort [2.5 and
2.6].

Quicksort is based on the fact that exchanges should preferably be
performed over large distances in order to be most effective. Assume that
n items are given in reverse order of their keys. It is possible to sort them
by performing only n/2 exchanges, first taking the left and the rightmost
and gradually progressing inward from both sides. Naturally, this is possible
only if we know that their order is exactly inverse. But something might
still be learned from this example.

SEC. 2.2 SORTING ARRAYS 77

Let us try the following algorithm: Pick any item at random (and call
it x); scan the array from the left until an item @, > x is found and then scan
from the right until an item a; < x is found. Now exchange the two items
and continue this “scan and swap” process until the two scans meet some-
where in the middle of the array. The result is that the array is now parti-
tioned into a left part with keys less than x and a right part with keys greater
than x. This partitioning process is now formulated in the form of a proce-
dure in Program 2.9. Note that the relations > and << have been replaced by
> and << whose negation in the while clause is < and >. With this change
x acts as a sentinel for both scans.

procedure partition;;
var w,x: item;
begin i := 1; j := n;
select at random an item x;
repeat
while a[ilkey < x .key do i := i+1;
while x.key < a[j] .key do j := j—1;
if i < j then
begin w := d[i]; a[i] := a[j]; alj] := w;
= i+1;j:=j—1
end
until i > j
end

Program 2.9 Partition.

As an example, if the middle key 42 is selected as comparand x, then the array
of keys
44 55 12 42 94 06 18 67

requires two exchanges to result in the partitioned array

4! ¥ Vv l
18 06 12 |42] 94 55 44 67

the final index values are i = 5 and j = 3. Keys a, . .. a;,_, are less or equal
to key x = 42, keys a,,, . . . a, are greater or equal to key x. Consequently,
there are two partitions, namely,

a,.key < x.key fork=1...i—1
(2.14)
a,.key > x.key fork=j+1...n
and consequently,
ai.key = x.key fork=j+1...i—1
This algorithm is very straightforward and efficient because the essential
comparands 7, j, and x can be kept in fast registers throughout the scan.

78 SORTING CHAP. 2

However, it can also be cumbersome, as witnessed by the case with » identical
keys, which results in n/2 exchanges. These unnecessary exchanges might
easily be eliminated by changing the scanning statements to

while afi] key < x .key do i := i+1;
while x .key < a[j] key do j := j—1;

In this case, however, the choice element x, which is present as a member
of the array, no longer acts as a sentinel for the two scans. The array with
all identical keys would cause the scans to go beyond the bounds of the
array unless more complicated termination conditions were used. The
simplicity of the conditions used in Program 2.9 is well worth the extra
exchanges that occur relatively rarely in the average “random” case. A
slight saving, however, may be achieved by changing the clause controlling
the exchange step to
i<j

instead of i <{j. But this change must not be extended over the two state-
ments

it=1it+l; j:=j—1
which therefore require a separate conditional clause. The necessity of this
clause is demonstrated by the following example with x = 2:

I vt 1 2111
The first scan and exchange results in
1 111112

and i = 5,j = 6. The second scan leaves the array unchanged, with i =7,
j = 6. Had the exchange not been subjected to the condition i < j, an erro-
neous exchange of a5 and a, would have been executed.

Confidence in the correctness of the partition algorithm can be gained
by verifying that the two assertions (2.14) are invariants of the repeat state-
ment. Initially, with i = 1 and j = n, they are trivially true, and upon exit
with i > j, they imply the desired result.

We now have to recall that our goal is not only to find partitions of the
original array of items, but also to sort it. However, it is only a small step
from partitioning to sorting: after partitioning the array, apply the same pro-
cess to both partitions, then to the partitions of the partitions, and so on,
until every partition consists of a single item only. This recipe is described
by Program 2.10.

Procedure sort activates itself recursively. Such use of recursion in
algorithms is a very powerful tool and will be discussed further in Chap. 3.
In some programming languages of older provenience, recursion is dis-
allowed for certain technical reasons. We will now show how this same algo-
rithm can be expressed as a non-recursive procedure. Obviously, the solution

SEC. 2.2 SORTING ARRAYS 79

procedure quicksort;
procedure sort (Ir: index);
var i,j: index; x,w: item;
begin i :=1I; j := r;
x 1= a[({+r) div 2];
repeat
while a[i] .key < x .key do i := i+1;
while x .key < a[j] .key do j := j—1;
if i < j then
begin w := d[i]; a[i] := a[j]; a[j] := w;
ii=1i+1;j:=j—1
end
until i > j;
if I < j then sort(l,j);
if i < r then sort(i,r)
end ;
begin sort(1,n)
end {quicksort}
Program 2.10 Quicksort.

is to express recursion as an iteration, whereby a certain amount of addi-
tional bookkeeping operations become necessary.

The key to an iterative solution lies in maintaining a list of partitioning
requests that have yet to be performed. After each step, two partitioning
tasks arise. Only one of them can be attacked directly by the subsequent
iteration; the other one is stacked away on that list. It is, of course, essential
that the list of requests is obeyed in a specific sequence, namely, in reverse
sequence. This implies that the first request listed is the last one to be obeyed,
and vice versa; the list is treated as a pulsating stack. In the following non-
recursive version of Quicksort, each request is represented simply by a left
and a right index specifying the bounds of the partition to be further parti-
tioned. Thus, we introduce an array variable called stack and an index s
designating its most recent entry (see Program 2.11). The appropriate choice
of the stack size m will be discussed during the analysis of Quicksort.

Analysis of Quicksort. 1In order to analyze the performance of Quicksort,
we need to investigate the behavior of the partitioning process first. After
having selected a bound x, it sweeps the entire array. Hence, exactly n com-
parisons are performed. The number of exchanges can be determined by the
following probabilistic argument.

Assume that the data set to be partitioned consists of the nkeys 1. .. n,
and that we have selected x as the bound. After the partitioning process, x
will occupy the xth position in the array. The number of exchanges required

80 SORTING CHAP, 2

procedure quicksort 1;
const m = 12;
var i,j,Lr: index;
x,w: item;
s:0 .. m;
stack: array [1..m] of
record Lr: index end;
begin s := 1; stack[l] . := 1; stack[l] .r := n;
repeat {take top request from stack}
| := stack[s] .I; r := stack[s] .r; s := s—1;
repeat {split a[l] ... a[r]}
i:=1;j:=r; x:= al(l+r) div 2];
repeat
while a[i] .key < x .key do i := i+1;
while x .key < a[j] .key do j := j—1;
if i < j then
begin w := dq[i]; a[i] := alj]; alj] := w;
ii=1i+l;j:=j—1
end
until i > j;
if i < r then
begin {stack request to sort right partition}
s 1= s+1; stack[s] .l := i; stack[s] .r :=r
end ;
ri=yj
until / > r
until s = 0
end {quicksort 1}

Program 2.11 Non-recursive Version of Quicksort.

is equal to the number of elements in the left partition (x — 1) times the
probability of a key having been interchanged. A key is exchanged, if it
is not less than the bound x. This probability is (n — x 4 1)/n. The expected
number of exchanges is obtained by summation over all possible choices of
the bound and dividing by .

1 &n—x n 1
M_—n—x; - < (n x-{—l)_F——@ (2.15)
Hence, the expected number of exchanges is approximately n/6.
Assuming that we are very lucky and always happen to select the median
as the bound, then each partitioning process splits the array in two halves,
and the number of necessary passes to sort is log n. The resulting total number

of comparisons is then n-log n, and the total number of exchanges is n/6-log n.

SEC. 2.2 SORTING ARRAYS 81

Of course, one cannot expect to hit the median all the time. In fact, the
chance of doing so is only 1/n. Surprisingly, however, the average perfor-
mance of Quicksort is inferior to the optimal case by a factor of only 2-1n 2
if the bound is chosen at random.

But Quicksort does have its pitfalls. First of all, it performs moderately
well for small values of n, as do all advanced methods. Its advantage over
the other advanced methods lies in the ease with which a straight sorting
method can be incorporated to handle small partitions. This is particularly
advantageous when considering the recursive version of the program.

Still, there remains the question of the worst case. How does Quicksort
perform then? The answer is unfortunately disappointing and it unveils the
one weakness of Quicksort (which in those cases becomes Slowsort). Consid-
er, for instance, the unlucky case in which each time the largest value of a
partition happens to be picked as comparand x. Then each step splits a
segment of n items into a left partition with n — 1 and a right partition with
one single item. The result is that n instead of only log n splits become
necessary and that the worst-case performance is of the order n2.

Apparently, the crucial step is the selection of the comparand x. In our
example program it is chosen as the middle element. Note that one might
almost as well select either the first or the last element a[/] or a[r]. In these
cases, the worst case is the initially sorted array; Quicksort then shows a
definite dislike for the trivial job and a preference for disordered arrays.
In choosing the middle element, the strange characteristic of Quicksort
is less obvious because the initially sorted array becomes the optimal case!
In fact, the average performance is slightly better if the middle element is
selected. Hoare suggests that the choice of x be made “at random” or by
selecting it as the median of a small sample of, say, three keys [2.12 and 2.13].
Such a judicious choice hardly influences the average performance of Quick-
sort, but it improves the worst-case performance considerably. It becomes
evident that sorting on the basis of Quicksort is somewhat like a gamble
in which one should be aware of how much one may afford to lose if bad
luck were to strike.

There is one important lesson to be learned from this experience; it
concerns the programmer directly. What are the consequences of the worst
case behavior mentioned above to the performance of Program 2.11? We
have realized that each split results in a right partition of only a single
element; the request to sort this partition is stacked for later execution.
Consequently, the maximum number of requests, and therefore the total
required stack size, is n. This is, of course, totally unacceptable. (Note that
we fare no better—and, in fact, even worse—with the recursive version
because a system allowing recursive activation of procedures will have to
store the values of local variables and parameters of all procedure activa-

82 SORTING CHAP. 2

tions automatically, and it will use an implicit stack for this purpose.) The
remedy lies in stacking the sort request for the longer partition and in
continuing directly with the further partitioning of the smaller sections. In
this case, the size of the stack m can be limited to m = log, n.

The change necessary to Program 2.11 is localized in the section setting
up new requests. It now reads

if j—I < r—i then
begin if i < r then
begin {stack request for sorting right partition}
s := s+1; stackls] .l := i; stack[s] .r :=r
end;
r := j ({continue sorting left partition}
end else (2.16)
begin if / < j then
begin {stack request for sorting left partition}
s := s-+1; stack[s] .l := 1I; stack[s] .r :=j
end;
| := i {continue sorting right partition}
end

2.2.7. Finding the Median

The median of n items is defined as that item which is less than (or equal
to) half of the n items and which is larger than (or equal to) the other half
of the n items. For example, the median of

16 12 99 95 18 87 10
is 18.

The problem of finding the median is customarily connected with that
of sorting because one sure method of determining the median is to sort the
n items and then to pick the item in the middle. But partitioning by Program
2.9 yields a potentially much faster way of finding the median. The method to
be displayed easily generalizes to the problem of finding the kth smallest
of n items. Finding the median represents the special case k = n/2.

The algorithm invented by C. A. R. Hoare [2-4] functions as follows.
First, the partitioning operation of Quicksort is applied with/ = landr = n
and with a[k] selected as splitting value (bound) x. The resulting index values
i and j are such that

l. a[l] < xforallh <i
2. alhll > xorallh>j 2.17)
.i>j

SEC. 2.2 SORTING ARRAYS 83

There are three possible cases that may arise:

1. The splitting value x was too small; as a result, the limit between the
two partitions is below the desired value k. The partitioning process
has to be repeated upon the elements a[i] . . . a[r] (see Fig. 2.9).

=] E]
11 ! ;
/ Y k r

Fig. 2.9 Bound too small.

2. The chosen bound x was too large. The splitting operation has to be
repeated on the partition a[/] . . . a[j] (see Fig. 2.10).

L < [>]

f f 1T
Jo

/ k

Fig. 2.10 Bound too large.

3. j < k < i: the element q[k] splits the array into two partitions in the
specified proportions and therefore is the desired quantile (see Fig. 2.11).

il < > |
T it)
J ki

r

)
k
Fig. 2.11 Correct bound.

The splitting process has to be repeated until case 3. arises. This iteration
is expressed by the following piece of program:

l:=1;r:= n;
while /| < r do
begin x := qlk];
partition(all] . . . a[r]); (2.18)
if j < k then [:= i;
if Kk < ithen r :=j
end

For a formal proof of the correctness of this algorithm, the reader is referred
to the original article by Hoare. The entire program Find is readily derived
from this.

84 SORTING CHAP. 2

procedure find (k; integer);
var Lr,i,j,w,x: integer;
begin [:= 1; r := n;
while / < r do
begin x := alk]; i := 1, j := r;
repeat {split}
while afi] < x do i := i+1;
while x < a[jl do j := j—1;
if i < j then
begin w := d[i]; a[i] := a[j]; al[j] := w;
i:=i41;j:=j—1
end
until i > j;
if j < k then [:= i
if k <ithenr:=j
end
end { find}

Program 2.12 Find the kth element.

If we assume that on the average each split halves the size of the partition
in which the desired quantile lies, then the number of necessary comparisons
is

n+—'2l—|-%+~--—|—1i2n (2.19)

i.e., it is of order n. This explains the power of the program Find for finding
medians and similar quantiles, and it explains its superiority cver the straight-
forward method of sorting the entire set of candidates before selecting the
kth (where the best is of order n-log n). In the worst case, however, each
partitioning step reduces the size of the set of candidates only by 1, resulting
in a required number of comparisons of order n?. Again, there is hardly any
advantage in using this algorithm if the number of elements is small, say,
fewer than 10.

2.2.8. A Comparison of Array Sorting Methods

To conclude this parade of sorting methods, we shall try to compare their
effectiveness. If n denotes the number of items to be sorted, C and M shall
again stand for the number of required key comparisons and item moves,
respectively. Closed analytical formulas can be given for all three straight
sorting methods. They are tabulated in Table 2.8. The column indicators
min, ave, max, specify the respective minima, maxima, and expected values
averaged over all n! permutations of n items.

SEC. 2.2 SORTING ARRAYS 85

Min Ave Max
Straight = n-—1 (n2 4+ n — 2)/4 nz—n2 -1
Insertion M= 2n—1) (n2 — 9n — 10)/4 (n2 + 3n — 4))2
Straight C= (n2—n)2 (n2 — n)/2 (nz2 — n)/2
Selection M= 3hnh—1) n(ln n + 0.57) n2/4 +3n—1)
Straight C= (n2—n)2 (nz2 — n)/2 (n2 — n)/2
Exchange M= 0 (n2 — n)*0.75 (n2 — n)*1.5

(Bubblesort)

Table 2.8. Comparison of Straight Sorting Methods.

No reasonably simple accurate formulas are available on the advanced
methods. The essential facts are that the computational effort needed is
c¢,-n*? in the case of Shellsort and is c;-n-log(n) in the cases of Heapsort and
Quicksort.

These formulas merely provide a rough measure of performance as
functions of n, and they allow the classification of sorting algorithms into
primitive, straight methods (#?) and advanced or “logarithmic” methods
(n-log n). For practical purposes, however, it is helpful to have some experi-
mental data available that shed some light on the coefficients ¢, which further
distinguish the various methods. Moreover, the formulas do not take into
account the computational effort expended on operations other than key
comparisons and item moves, such as loop control, etc. Clearly, these factors
depend to some degree on individual systems, but an example of experi-
mentally obtained data is nevetheless informative. Table 2.9 shows the times
(in milliseconds) consumed by the sorting methods previously discussed, as
executed by the PASCAL system on a CDC 6400 computer. The three col-

Ordered Random Inversely Ordered
Straight insertion 12 23 366 1444 704 2836
Binary insertion 56 125 373 1327 662 2490
Straight selection 489 1907 509 1956 695 2675
Bubblesort 540 2165 1026 4054 1492 5931
Bubblesort with flag 5 8 1104 4270 1645 6542
Shakersort 5 9 961 3642 1619 6520
Shellsort 58 116 127 349 157 492
Heapsort 116 253 110 241 104 226
Quicksort 31 69 60 146 37 79
Mergesort* 99 234 102 242 99 232

*See Sect. 2.3.1.
Table 2.9. Execution Times of Sort Programs.

86 SORTING CHAP. 2

umns contain the times used to sort the already ordered array, a random
permutation, and the inversely ordered array. The left figure in each column
is for 256 items, the right one for 512 items. The data clearly separate the n?
methods from the n-log n methods. Noteworthy are the following points:

1. The improvement of binary insertion over straight insertion is marginal
indeed, and even negative in the case of an already existing order.

2. Bubblesort is definitely the worst sorting method among all compared.
Its improved version “Shakersort” is still worse than straight insertion
and straight selection (except in the pathological case of sorting a sorted
array).

3. Quicksort beats Heapsort by a factor of 2 to 3. It sorts the inversely
ordered array with speed practically identical to the one which is already
sorted.

It must be added that the data were gathered by sorting items consisting
of a key only, without associated data. This is not a very realistic assumption;
Table 2.10 shows the influence of enlarging the size of the items. In the
example chosen the associated data occupy seven times the storage space
of the key. The left figure in each column displays the time needed for
sorting records without associated data; the right figure relates to sorting
with associated data; n = 256.

Ordered Random Inversely Ordered
Straight insertion 12 46 366 1129 704 2150
Binary insertion 56 76 373 1105 662 2070
Straight selection 489 547 509 607 695 1430
Bubblesort 540 610 1026 3212 1492 5599
Bubblesort with flag S 5 1104 3237 1645 5762
Shakersort 5 5 961 3071 1619 5757
Shellsort 58 186 127 373 157 435
Heapsort 116 264 110 246 104 227
Quicksort 31 S5 60 137 37 75
Mergesort* 99 196 102 195 99 187

*See Sect. 2.3.1.
Table 2.10. Execution Times of Sort Programs. (Keys with Associated Data).

The following details should be noted:

1. Straight selection has gained significantly and now emerges as the best
of the straight methods.

2. Bubblesort is still the worst method by a large margin (it has even lost
ground!), and only its “improvement” called Shakersort is slightly
worse in the case of the inversely ordered array.

SEC. 2.3 SORTING SEQUENTIAL FILES 87

3. Quicksort has even strengthened its position as the quickest method and
appears as the best array sorter by far.

2.3. SORTING SEQUENTIAL FILES
2.3.1. Straight Merging

Unfortunately, the sorting algorithms presented in the preceding chapter
are inapplicable if the amount of data to be sorted does not fit into a com-
puter’s main store, but if it is, for instance, represented on a peripheral and
sequential storage device such as a tape. In this case we describe the data
as a (sequential) file whose characteristic is that at each moment one and
only one component is directly accessible. This is a severe restriction com-
pared to the possibilities offered by the array structure, and therefore dif-
ferent sorting techniques have to be used. The most important one is sorting
by merging. Merging (or collating) means combining two (or more) ordered
sequences into a single, ordered sequence by repeated selection among the
currently accessible components. Merging is a much simpler operation than
sorting, and it is used as an auxiliary operation in the more complex process
of sequential sorting. One way of sorting on the basis of merging, called
straight merging, is the following:

1. Split the sequence a into two halves, called b and c.

2. Merge b and ¢ by combining single items into ordered pairs.

3. Call the merged sequence a, and repeat steps 1 and 2, this time merging
ordered pairs into ordered quadruples.

4. Repeat the previous steps, merging quadruples into octets, and continue
doing this, each time doubling the lengths of the merged subsequences,
until the entire sequence is ordered.

As an example, consider the sequence
44 55 12 42 94 18 06 67
In step 1, the split results in the sequences
44 55 12 42
94 18 06 67

The merging of single components (which are ordered sequences of length
1), into ordered pairs yields

44 94 ' 18 55 ' 06 12 ' 42 67
Splitting again in the middle and merging ordered pairs yields
06 12 44 94 ' 18 42 55 67

88 SORTING CHAP. 2

A third split and merge operation finally produces the desired result
06 12 18 42 44 55 67 94

Each operation that treats the entire set of data once is called a phase,
and the smallest subprocess which by repetition constitutes the sort process
is called a pass or a stage. In the above example the sort took three passes,
each pass consisting of a splitting phase and a merging phase. In order to
perform the sort, three tapes are needed; the process is therefore called a
three-tape merge.

Actually, the splitting phases do not contribute to the sort since they
do in no way permute the items; in a sense they are unproductive, although
they constitute half of all copying operations. They can be eliminated alto-
gether by combining the split and the merge phases. Instead of merginginto
a single sequence, the output of the merge process is immediately redis-
tributed onto two tapes, which constitute the sources of the subsequent pass.
In contrast to the previous two-phase merge sort, this method is called a
single-phase merge or a balanced merge. 1t is evidently superior because only
half as many copying operations are necessary; the price for this advantage
is a fourth tape.

We shall develop a merge program in detail and initially let the data be
represented as an array which, however, is scanned in strictly sequential
fashion. A later version of a merge sort will then be based on the file structure,
allowing a comparison of the two programs and demonstrating the strong
dependence of the form of a program on the underlying representation of
its data.

A single array may easily be used in place of two files if it is regarded as a
double-ended sequence. Instead of merging from two source files, we may
pick items off the two ends of the array. Thus, the general form of the
combined merge-split phase can be illustrated as shown in Fig. 2.12. The
destination of the merged items is switched after each ordered pair in the
first pass, after each ordered quadruple in the second pass, etc., thus evenly
filling the two destination sequences, represented by the two ends of a single
array. After each pass, the two arrays interchange their roles, the source
becomes the new destination, and vice versa.

source destination

[1 L1 [[
} } B K

i k /

() o
merge\< > split

Fig. 2.12 Straight mergesort with two arrays.

SEC. 2.3 SORTING SEQUENTIAL FILES 89

A further simplification of the program can be achieved by joining the
two conceptually distinct arrays into a single array of doubled size. Thus,
the data will be represented by

a : array[l .. 2+n)] of item (2.20)

and we let the indices i and j denote the two source items, whereas k and /
designate the two destinations (see Fig. 2.12). The initial data are, of course,
the items a, . .. a,. Clearly, a Boolean variable up is needed to denote the
direction of the data flow; up = true shall mean that in the current pass
components a, ...a, will be moved “up” to the variables a,., ... a,,
whereas up = false will indicate that a,.,...a,, will be transferred
“down” into a, .. .a,. The value of up strictly alternates between consecutive
passes. And, finally, a variable p is introduced to denote the length of the
subsequences to be merged. Its value is initially 1, and it is doubled before
each successive pass. To simplify matters somewhat, we shall assume that
n is always a power of 2. Thus, the first version of the straight merge program
assumes the following form:

procedure mergesort;
var i,j,k,l: index;
up: Boolean; p: integer;
begin up := true; p := 1,
repeat {initialize indices}

if up then
begin i := 1; j:= n; k := n+1; 1 := 2+*n
end else (2.21)
begin kK := 1; l:= n; i := n+1;j:= 2*n
end;

“merge p-tuples from i- and j-sequences into
k- and I-sequences”;
up 1= —up; p 1= 2%p
until p = n
end

In the next development step we refine the statement expressed (within
quotes) in natural language. Evidently, this merge pass involving » items is
itself a sequence of merges of subsequences, i.e., of p-tuples. Between every
such partial merge the destination is switched from the lower to the upper
end of the destination array, or vice versa, to guarantee equal distribution
onto both destinations. If the destination of the merged items is the lower
end of the destination array, then the destination index is k, and k is incre-
mented by 1 after each move of an item. If they are to be moved to the upper
end of the destination array, the destination index is /, and / is to be decre-
mented by 1 after each move. In order to simplify the actual merge statement,
we choose the destination to be designated by k at all times, switching the

90 SORTING CHAP. 2

values of the variables k and / after each p-tuple merge, and denote the
increment to be used at all times by 4, where 4 is either 1 or — 1. These design
discussions lead to the following refinement:

h:=1; m:= n; {m = no. of items to be merged}
repeat g := p; r := p; m := m—2%p;
“merge ¢ items from i with r items from j,
destination index is £ with increment A”; (2.22)
h:= —h;
exchange k and /
until m = 0

In the further refinement step the actual merge statement is to be for-
mulated. Here we have to keep in mind that the tail of the one subsequence
which is left non-empty after the merge has to be appended to the output
sequence by simple copying operations.

while (g20) A (r20) do
begin {select an item from i or j}
if ali] .key << a[j] .key then
begin “move an item from i to k, advance i and k”; q := g—1

end else
begin “move an item from j to k; advance j and k”; r := r—1
end

end;

“copy tail of i-sequence”;

“copy tail of j-sequence” (2.23)

After this further refinement of the tail copying operations, the program
is laid out in complete detail. Before writing it out in full, we wish to elimi-
nate the restriction that n be a power of 2. Which parts of the algorithm are
affected by this relaxation of constraints? We easily convince ourselves that
the best way to cope with the more general situation is to adhere to the old
method as long as possible. In this example this means that we continue
merging p-tuples until the remainders of the source sequences are of length
less than p. The one and only one part that is influenced are the statements
that determine the values of ¢ and r, the lengths of the sequences to be merged.
The following four statements replace the three statements

q:=p;r:i=p; mi= m—2%p
and, as the reader should convince himself, they represent an effective
implementation of the strategy specified above; note that m denotes the
total number of items in the two source sequences which remain to be
merged:
> p then g := p else g := m; m := m—gq;
if m > pthenr:=pelse r:=m; m:= m—r;

SEC. 2.3 SORTING SEQUENTIAL FILES 91

In addition, in order to guarantee termination of the program, the condi-
tion p = n, which controls the “outer” repetition, must be changed to
p > n. After these modifications, we may now proceed to describe the entire
algorithm in terms of a complete program (see Program 2.13).

procedure mergesort;
var i,j,k,Lt: index;
h,m,p,q.r: integer; up: boolean;

{note that a has indices 1 . .. 2xn}
begin up := true; p 1= 1;

repeat h := 1; m := n;
if up then
begin i := 1; j:= n; k := n+1; [:= 2x*n
end else
begin k := 1; /:= n; i:= n+1; j:= 2+n
end ;

repeat {merge a run from i and j to k}
{q = length of i-run, r = length of j-run}
if m > pthen q := p else g := m; m := m—q,;
if m > pthenr:=pelser:=m;,m:= m—r;
while (4£0) A (r+0) do
begin {merge}
if ali] .key << a[j] .key then
begin alk] := ali]; k := k+h; i := i+1; g := g—1
end else
begin alk] := a[j]; k := k+h; j:=j—1;r = r—1
end
end ;
{copy tail of j-run}
while r = 0 do
begin alk] := a[jl; k := k+h; j:=j—1;r:=r—1
end ;
{copy tail of i-run}
while ¢ = 0 do
begin alk] := afi]; k := k+h; i 1= i+1; q:=q—1
end ;
h:=—h,t:=k; k:=1,1:=1
until m = 0;
up 1= —up; p i= 2xp
until p > n;
if —up then
for i := 1 tondo afi] := afi+n]
end {mergesort}
Program 2.13 Straight Mergesort.

92 SORTING CHAP. 2

Analysis of Mergesort. Since each pass doubles p, and since the sort
is terminated as soon as p > n, it involves [log, n] passes. Each pass, by defi-
nition, copies the entire set of n items exactly once. As a consequence, the
total number of moves is exactly

M = n-[logn] (2.24)

The number C of key comparisons is even less than M since no comparisons
are involved in the tail copying operations. However, since the mergesort
technique is usually applied in connection with the use of peripheral storage
devices, the computational effort involved in the move operations dominates
the effort of comparisons often by several orders of magnitude. The detailed
analysis of the number of comparisons is therefore of little practical interest.
The merge sort algorithm apparently compares well with even the
advanced sorting techniques discussed in the previous chapter. However,
the administrative overhead for the manipulation of indices is relatively
high, and the decisive disadvantage is the need for storage of 2n items. This
is the reason why sorting by merging is rarely used upon arrays, i.e., upon
data located in main store. Figures comparing the real time behavior of this
Mergesort algorithm appear in the last lines of Tables 2.9 and 2.10. They
compare favorably with Heapsort but unfavorably with Quicksort.

2.3.2. Natural Merging

In straight merging no advantage is gained when the data are initially
already partially sorted. The length of all merged subsequences in the kth
pass is (less than or) equal to 2%, independent of whether longer subsequences
are already ordered and could as well be merged. In fact, any two ordered
subsequences of lengths m and n might be merged directly into a single se-
quence of m + nitems. A mergesort which at any time merges the two longest
possible subsequences is called a natural merge sort.

An ordered subsequence is often called a string. However, since the
word string is even more frequently used to describe sequences of characters,
we will follow Knuth in our terminology and use the word run instead of
string when referring to ordered subsequences. We call a subsequence
a, ... a; such that

a, < gy for k=i...j—1

a1 > q (2.25)

a J >a j+1
a maximal run or, for short, a run. A natural merge sort, therefore, merges
(maximal) runs instead of sequences of fixed, predetermined length. Runs
have the property that if two sequences of n runs are merged, a single se-

quence of exactly n runs emerges. Therefore, the total number of runs is
halved in each pass, and the number of required moves of items is in the worst

SEC. 2.3 SORTING SEQUENTIAL FILES 93

case n-[log, n], but in the average case it is even less. The expected number
of comparisons, however, is much larger because in addition to the com-
parisons necessary for the selection of items, further comparisons are needed
between consecutive items of each file in order to determine the end of each
run.

Our next programming exercise develops a natural merge algorithm in
the same stepwise fashion that was used to explain the straight merging
algorithm. It employs the sequential file structure instead of the array, and
it represents an unbalanced, two-phase, three-tape merge sort. We assume
that the initial sequence of items is given as the file ¢, on which the sorted
output will appear. (Naturally, in actual data processing applications, the
initial data are first copied from the original tape onto file ¢ for reasons of
safety.) The two auxiliary tapes are a and b. Each pass consists of a distribu-
tion phase that distributes runs equally from ¢ onto @ and b and a merge
phase that merges runs from a and b onto c. This process is illustrated in Fig.
2.13.

a a a
—c{}g{}i c Z j c
b b b

Y Y<——merge phase

\ distribution phase

pass 1 pass 2 pass n

Fig. 2.13 Sort phases and sort passes.

17 31 5 59”13 41 43 67" 11 23 29 477 3 7 71" 2 19 57" 37 61
517 31 59" 11 13 23 29 41 43 47 677 2 3 7 19 57 71’ 37 61
511 13 17 23 29 31 41 43 47 59 677 2 3 7 19 37 57 61 71
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 57 59 61 67 71

Table 2.11. Example of a Natural Mergesort.

As an example, Table 2.11 shows the file ¢ in its original state (line 1)
and after each pass (lines 2-4) in a natural merge sort involving 20 numbers.
Note that only three passes are needed. The sort terminates as soon as the
number of runs on ¢ is 1. (We assume that there exists at least one non-empty
run on the initial file.) We therefore let a variable / be used for counting the
number of runs merged onto file ¢. If we define the global entities

type tape = file of item;

var c: tape (2.26)

94 SORTING CHAP. 2

then the program can be formulated as follows:

procedure naturalmerge;
var [: integer;

ab: tape;
begin
repeat rewrite(a); rewrite(b); reset(c); @.27)
distribute; '
reset(a); reset(b); rewrite(c);
1 := 0; merge
until / = 1
end

The two phases clearly emerge as two distinct statements. They are now
to be refined, i.e., expressed in more detail. The refined descriptions can
either be directly substituted or they may be described as procedures, and
the abbreviated statements must be regarded as procedure calls. This time
we choose the latter method and define

procedure distribute; . { from ¢ to a and b}
begin
repeat copyrun(c,a); (2.28)
if —eof (c) then copyrun(c,b)
until eof (¢)
end
and
procedure merge;
begin {from a and b to ¢}
repeat mergerun; | := 141 (2.29)
until eof (b);
if —eof (a) then
begin copyrun(a,c); I := I+1
end
end

This method of distribution supposedly results in either equal numbers of
runs on files a and b or in file a containing one run more than b. Since cor-
responding pairs of runs are merged, a leftover run may still be on file a,
which simply has to be copied. The procedures merge and distribute are
formulated in terms of subordinate procedures mergerun and copyrun with
obvious tasks. These procedures are now explained in further detail; they
require the introduction of a global Boolean variable eor that specifies wheth-
er or not the end of the run has been reached.

SEC. 2.3 SORTING SEQUENTIAL FILES 95

procedure copyrun(var x,y: tape);
begin {copy one run from x to y}

repeat copy(x,y) until eor (2.30)
end
procedure mergerun;
begin {merge a run from a and b to c}
repeat if af.key < bf.key then
begin copy(a,c);
if eor then copyrun(b,c)
end else (2.31)
begin copy(b,c);
if eor then copyrun(a,c)
end
until eor

end

The comparison and selection process of keys in merging a run term-
inates as soon as one of the two runs is exhausted. After this, the other run
(which is not exhausted yet) has to be transferred to the resulting run by
merely copying its tail. This is done by a call of the procedure copyrun.

The two procedures are defined in terms of the subordinate procedure
copy, which transfers one item from a source file x to a destination file y
and determines whether or not the end of a run has been reached. It is
readily expressed in terms of a read and a write statement. In order to deter-
mine the end of a run, the key of the last item read (copied) must be retained
for comparison with its successor. This “lookahead” is achieved by inspecting
the file buffer variable x1.

procedure copy(var x,y: tape);
var buf: item;

begin read(x, buf); write(y, buf); (2.32)
if eof (x) then eor := true else eor := buf.key > x1.key

end

This terminates the development of the natural merging sort procedure.
Regrettably, the program is incorrect, as the careful reader may have noticed.
The program is incorrect in the sense that it does not sort properly in some
cases. Consider, for example, the following sequence of input data:

32511 7 13 19 17 23 31 29 37 43 41 47 59 57 61 71 67
By distributing consecutive runs alternately onto the files a and b, we obtain
a=3"'7 13 19'29 37 43'57 61 71°
b =2 5 11"17 23 31"'41 47 59 ' 67

96 SORTING CHAP. 2

These sequences are readily merged into a single run, whereafter the sort
terminates successfully. The example, although it does not lead to an erro-
neous behavior of the program, makes us aware that mere distribution of
runs onto several files may result in a number of output runs that is less
than the number of input runs. This is because the first item of the i + 2nd
run may be larger than the last item of the ith run, thereby causing the two
runs to merge automatically into a single run.

Although the procedure distribute supposedly outputs runs equally onto
the two files, the important consequence is that the actual number of result-
ing runs on a and b may significantly differ. Our merge procedure, however,
will only merge pairs of runs and terminate as soon as file b is read, thereby
losing the tail of one of the files. Consider the following input data which are
sorted (and truncated) in two subsequent passes:

17 19 13 57 23 29 11 59 31 37 7 61 41 43 5 67 47 71 2 3
13 17 19 23 29 31 37 41 43 47 57 71 11 59
11 13 17 19 23 29 31 37 41 43 47 57 59 71

Table 2.12 Incorrect Result of Mergesort Program.

The example of this programming mistake is typical for many programming
situations. The mistake is caused by an oversight of one of the possible
consequences of a presumably simple operation. It is also typical in the
sense that several ways of remedying the mistake are open and that one of
them has to be chosen. Often there exist two possibilities that differ in a
very important, fundamental way:

1. We recognize that the operation of distribution is incorrectly pro-
grammed and does not satisfy the requirement that the number of runs
are equal (or differ by at most 1). We stick to the original scheme of
operation and.correct the faulty procedure accordingly.

2. We recognize that the correction of the faulty part involves far-reaching
modifications, and we try to find ways in which other parts of the algo-
rithm may be changed to accommodate the currently incorrect part.

In general, the first path seems to be the safer, cleaner one, the more
honest way, providing a fair degree of immunity from later consequences
of overlooked, intricate side effects. It is, therefore, the way toward a solu-
tion that is generally (and rightly) recommended.

It is to be pointed out, however, that the second possibility should some-
times not be entirely ignored. It is for this reason that we further elaborate
on this example and illustrate a fix by modification of the merge procedure
rather than the distribution procedure, which is primarily at fault.

This implies that we leave the distribution scheme untouched and
renounce the condition that runs are equally distributed. This may result

SEC. 2.3 SORTING SEQUENTIAL FILES 97

in a less than optimal performance. However, the worst-case performance
remains unchanged, and, moreover, the case of highly unequal distribution
is statistically very unlikely. Efficiency considerations are therefore no serious
argument against this solution.

If the condition of equal distribution of runs no longer exists, then the
merge procedure has to be changed so that, after reaching the end of one file,
the entire tail of the remaining file is copied instead of at most one run.

This change is straightforward and is very simple in comparison with any
change in the distribution scheme. (The reader is urged to convince himself
of the truth of this claim.) The revised version of the merge algorithm is
included in the complete Program 2.14.

Program 2.14 Natural Mergesort.

program mergesort (input, output);
{3-tape, 2-phase natural merge sort}
type item = record key: integer
{other fields defined here}
end ;
tape = file of item;
var c: tape; n: integer; buf: item,
procedure list (var f: tape);
var x: item;
begin reset(f);
while —eof (/) do
begin read(f,x); write(output, x.key)
end ;
writeln
end {/ist} ;
procedure naturalmerge;
var [: integer; {no. of runs merged}
eor: boolean; {end -of -run indicator}
ab: tape;
procedure copy(var x,y: tape);
var buf: item;
begin read(x, buf); write(y,buf);
if eof (x) then eor := true else eor := bufkey > xt.key
end ;

procedure copyrun (var x,y: tape);

begin {copy one run from x to y}
repeat copy(x,y) until eor

end ;

procedure distribute;
begin { from ¢ to a and b}
repeat copyrun (c,a);
if —eo f(c) then copyrun (c,b)
until eo f(c)
end ;
procedure mergerun;
begin { from a and b to c}
repeat
if al.key < b?.key then
begin copy (a,c);
if eor then copyrun (b,c)
end else
begin copy (b,c);
if eor then copyrun (a,c)
end
until cor
end ;
procedure merge;
begin { from a and b to c}
while —eof (a) A —eof (b) do
begin mergerun; | := [41
end;
while —eof (a) do
begin copyrun (a,c); | := I+1
end;
while —eof (b) do
begin copyrun (b,c); | := [+1
end ;
list (c)
end ;
begin
repeat rewrite(a); rewrite(b); reset(c);
distribute;
reset(a); reset(b); rewrite(c);
[:— 0; merge;
until / == 1
end ;
begin {main program; read input sequence ending with 0}
rewrite(c); read(buf.key);
repeat write(c.buf); read(buf.key)
until buf .key — 0;
list (¢);
naturalmerge;
list(c)
end .
Pro ram 2.14 (Continued)

SEC. 2.3 SORTING SEQUENTIAL FILES 99

2.3.3. Balanced Multiway Merging

The effort involved in a sequential sort is proportional to the number of
required passes since, by definition, every pass involves the copying of the
entire set of data. One way to reduce this number is to distribute runs onto
more than two files. Merging r runs which are equally distributed on N tapes
results in a sequence of r/N runs. A second pass reduces their number to
r/N?, a third pass to r/N3, and after k passes there are r/N* runs left. The
total number of passes required to sort n items by N-way merging is therefore
k = [logy n]. Since each pass requires n copy operations, the total number
of copy operations is in the worst case

M = n-[logy n|

As the next programming exercise, we will develop a sort program based
on multiway merging. In order to contrast further the program from the
previous natural two-phase merging procedure, we shall formulate the
multiway merge as a single phase, balanced mergesort. This implies that
in each pass there are an equal number of input and output files onto which
consecutive runs are alternately distributed. Using N files, the algorithm will
therefore be based on N/2-way merging, assuming that N is even. Following
the previously adopted strategy, we will not bother to detect the automatic
merging of two consecutive runs distributed onto the same tape. Consequent-
ly, we are forced to design the merge program without assuming strictly
equal numbers of runs on the input tapes.

In this program we encounter for the first time a natural application of
a data structure consisting of an array of files. As a matter of fact, it is sur-
pising how strongly the following program differs from the previous one
because of the change from two-way to multiway merging. The change is
primarily a result of the circumstance that the merge process can no longer
simply be terminated after one of the input runs is exhausted. Instead, a
list of inputs which are still active, i.e., not yet exhausted, must be kept.
Another complication stems from the need to switch the groups of input
and output tapes after each pass.

We start out by defining, in addition to the two familiar types item and
tape, a type

tapeno = 1..N (2.33)

Obviously, tape numbers are used to index the array of files of items. Let
us then assume that the initial sequence of items is given as a variable

f0 : tape (2.34)
and that for the sorting process N tapes are available, where N is even
f: array [tapeno] of tape (2.35)

A recommended technique of approaching the problem of tape switching is

100 SORTING

CHAP. 2

to introduce a tape index map. Instead of directly addressing a tape by its
index i, it is addressed via a map ¢, i.e., instead of each

fli] we write f[e[i]]

where the map is defined as

t: array [tapeno) of tapeno

(2.36)

If initially ¢[i] = i for all i, then a switch consists in merely exchanging the

pairs of map

components
1] <—>t[nh + 1]
2] <—> t[nh + 2]

t[nh] <— t[n]

where nh = n/2. Consequently, we may always consider

Sl - .., fldnh])

as input tapes, and we may always consider

flinh + 10, . . ., fTt[n]]

as output tapes. (Subsequently, we will simply call f[«[j]] “tape j” within

comments.) The algorithm can now be formulated initially as follows:

procedure tapemergesort;

var i,j: tapeno;
I: integer; {no. of runs distributed}
t: array [tapeno) of tapeno;

begin {distribute initial runs to t[1] . . . t[nh]}

end

Jj:i=nh; 1l := 0;
repeat if j << nh then j := j+1 else j := 1;
“copy one run from fO0 to tape j”;

l:=I4+1
until eof (f0);
for i := 1 to n do {i] := i;

repeat {merge from t[1]. .. t[nh] to tlnh-+1]. .. t[n]}
“reset input tapes”;
l:=0;
Jj = nh+1; {j = index of output tape}
repeat [:= [+1;
“merge a run from inputs to t[j]”
if j < n then j := j+1 else j := nh+1
until “all inputs exhausted” ;
“switch tapes”
mtil / = 1;
{sorted tape is 1[1]}

(2.37)

SEC. 2.3 SORTING SEQUENTIAL FILES 101

First, we refine the copy operation used in the initial distribution of runs;
we again introduce an auxiliary variable to buffer the last item read:

buf: item
and replace “copy one run from f0 to tape j” by the statement

repeat read(f0, buf);
write(f1j1, buf) (2.38)
until (buf-key > fO07.key) V eof (f0)

Copying a run terminates when either the first item of the next run is
encountered (buf.key > f0%.key) or when the end of the entire input file is
reached (eof (f0)).

In the actual sort algorithm there remain the statements

1. Reset input tapes
2. Merge a run from inputs to #[;]
3. Switch tapes

and the predicate
4. All inputs exhausted

to be specified in more detail. First, we must accurately identify the current
input files. Notably, the number of “active” input files may be less than
n/2. In fact, there can be at most as many sources as there are runs; the sort
terminates as soon as there is one single file left. This leaves open the possi-
bility that at the initiation of the last sort pass there are fewer than nh runs.
We therefore introduce a variable, say k1, to denote the actual number of
input files used. We incorporate the initialization of k1 in the statement
“reset input tapes” as follows:

if [< nh then k1l := [else k1 := nh;
for i := 1 to k1 do reset(f[t[i]]);

Naturally, statement (2) is to decrement k1 whenever an input source ceases.
Hence, predicate (4) may easily be expressed by the relation

k1 =0

Statement (2) is more difficult to refine; it consists of the repeated selection
of the least key among the available sources and its subsequent transport to
the destination, i.e., the current output tape. The process is complicated
again by the necessity of determining the end of each run. The end of a
run may be reached because (1) the subsequent key is less than the current
key or (2) the end of the source file is reached. In the latter case the tape is
eliminated by decrementing k1; in the former case the run is closed by
excluding the file from further selection of items, but only until the creation
of the current output run is completed. This makes it obvious that a second

102 SORTING CHAP. 2

variable, say k2, is needed to denote the number of source tapes actually
available for the selection of the next item. This value is initially set equal to
k1 and is decremented whenever a run terminates because of condition (1).

Unfortunately, the introduction of k2 is not enough; knowledge of the
number of tapes does not suffice. We need to know exactly which tapes are
still in the game. An obvious solution is to use an array with Boolean com-
ponents indicating the availability of the tapes. We choose, however, a
different method which leads to a more efficient selection procedure which,
after all, is the most frequently repeated part of the entire algorithm. Instead
of using a Boolean array, a second tape map, say ta, is introduced. This map
is used in place of ¢ such that tq[l]... ta[k2] are the indices of the rapes
available. Thus statement (2) can be formulated as follows:

k2 := kl;
repeat “select the minimal key, let talmx] be its tape number”;
read(f[talmx])], buf); (2.39)

write(f[t[j)], buf);

if eof (f[ta[mx]]) them “eliminate tape” else
if buf.key > fltalmx]]l.key then “close run”
until k2 = 0

Since the number of tape units available in any computer installation is
usually fairly small, the selection algorithm to be specified in further detail
in the next refinement step may as well be a straightforward linear search.
The statement “eliminate tape” implies a decrease of k1 as well as k2 and
implies a re-assignment of indices in the map ra. The statement “close
run” merely decrements k2 and re-arranges components of ta accordingly.
The details are shown in Program 2.15, which is a last refinement of (2.37)

Program 2.15 Balanced Mergesort.

program balancedmerge (output);
{balanced n-way tape merge sort}
const n = 6; nh = 3; {no. of tapes}
type item = record
key: integer

end ;
tape = file of item;
tapeno = 1..n;
var leng, rand: integer; {used to generate file}
eot: boolean; {end of tape}

buf: item;
f0: tape; {10 is the input tape with random numbers}
f: array [1..n] of tape;

procedure /ist(var f: tape; n: tapeno);
var z: integer;
begin writeln(TAPE’, n:2); z := 0;
while —eof (f) do
begin read(f, buf); write(output, bufkey: 5); z := z+1;
if z = 25 then
begin writeln(output); z := 0;
end
end ;
if z = O then writeln (output); reset(f)
end {list} ;

procedure tapemergesort;
var I,j,mx,tx: tapeno;
k1,k2,l; integer;
X, min: integer;
t, ta: array [tapeno] of tapeno;
begin {distribute initial runs to {[1] ... t[nh]}
for i := 1 to nh do rewrite(fi]);
Jji= nh; | := 0,
repeat if j << nhthen j := j{1lelse j := 1;
{copy one run from f0 to tape j}
l:= 14+1;
repeat read(f0, buf); write(f[j], buf’)
until (buf .key > fO1 .key) V eof (f0)
until eof (f0);
for i := 1tondoi] := i;
repeat {merge from t[1] ... t[nh] to t{nh+1] ... f[n]}
if [< nh then k1 := [else ki := nh;
{k1 = no. of input tapes in this phase}
for i := 1tokl do
begin reset(f[t[i1); list(fLe[iN), tli]); tali] := ¢[i]
end ;
| := 0; {l = number of runs merged}
j = nh+1; {j = index of output tape}
repeat {merge a run from t[1] ... tlk1] to t[j]}
k2 := kl; 1 := I4+1; {k2 = no. of active input tapes}
repeat {select minimal element}
i:=1; mx:=1; min:= f[ta[ll]}.key;
while i < k2 do
begin i := i+1; x := f[ta[il]-key;
if x < min then
begin min := x; mx := i
end
end ;

Program 2.15 (Continued)

103

104 SORTING CHAP. 2

{ta[mx] has minimal element, move it to t[j]}
read(f[talmx]], buf); eot := eof (f[talmx]]);
write(fTLj1l, buf);
if eot then
begin rewrite(fltalmx]]); {eliminate tape}
talmx] 1= talk2]; ta[k2] := talkl];
kl := kl1—1; k2 := k2—1
end else
if buf .key > flta[mx]]? .key then

begin tx := ta[mx]; ta[mx] := ta[k2]; talk2] := tx;
k2 := k2—1
end
until k2 = 0;
if j < nthen j := j+1 else j := nh+1
until k1 = 0;

for i := 1 to nh do
begin tx := f[il; 1[i] := fli+nh]; fli+nh] := tx
end
until / = 1;
reset(fIH11]); list(fIe[11], #[1]); {sorted output is on t[1]}
end {tapemergesort} ;

begin {generate random file f0}
leng := 200; rand := 7789; rewrite(f0);
repeat rand := (131071*rand) mod 2147483647,
buf .key := rand div 2147484 ; write(f0, buf); leng := leng — 1
until leng = 0;
reset(f0); list(f0, 1);
tapemergesort
end .

Program 2.15 (Continued)

through (2.39). Note that tapes are rewound by the procedure rewrite as soon
as their last run has been read. The statement “switch tapes” is elaborated
according to explanations given earlier.

2.3.4. Polyphase Sort

We have now discussed the necessary techniques and have acquired the
proper background to investigate and program yet another sorting algo-
rithm whose performance is superior to the balanced sort. We have seen that
balanced merging eliminates the pure copying operations necessary when
the distribution and the merging operations are united into a single phase.

SEC. 2.3 SORTING SEQUENTIAL FILES 105

The question arises whether or not the given tapes could still be better
utilized. This is indeed the case; the key to this next improvement lies in
abandoning the rigid notion of strict passes, i.e., to use the tapes in a more
sophisticated way than by always having N/2 source tapes and as many
destination tapes and exchanging source and destination tapes at the end
of each distinct pass. Instead, the notion of a pass becomes diffuse. The meth-
od was invented by R. L. Gilstad [2-3] and christened Polyphase Sort.

It is first illustrated by an example using three tapes. At any time, items
are merged from two tapes onto the third tape. Whenever one of the source
tapes is exhausted, it immediately becomes the destination tape of the merge
operations from the non-exhausted tape and the previous destination tape.

As we know that » runs on each input tape are transformed into » runs
on the output tape, we need to list only the number of runs present on each
tape (instead of specifying actual keys). In Fig. 2.14 we assume that initially
the two input tapes f1 and f2 contain 13 and 8 runs, respectively. Thus, in
the first “pass” 8 runs are merged from f1and f2 to f3, in the second “pass”
the remaining 5 runs are merged from f3 and f1 onto f2, etc. In the end, f'1
is the sorted file.

f2
13 8
I_I__’
5 0 8
I___*_I
o 5 3
‘__l__l
3 2 0
I_l_1v
1 0 2
I_r__J
0 1 1

{ Fig. 2.14 Polyphase mergesort of 21

1 0 runs with three tapes.

o

A second example shows the Polyphase method with 6 tapes. Let there
initially be 16 runs on 1, 150n f2, 14 on f3, 12 on 4, and 8 on f'5; in the first
partial pass, 8 runs are merged onto f'6; In the end, f2 contains the sorted set
of items (see Fig. 2.15).

Polyphase is more efficient than balanced merge because—given N tapes—
it always operates with an N — 1-way merge instead of an N/2-way merge.
As the number of required passes is approximately logy n, n being the num-

106 SORTING CHAP. 2

Tape f1 f2 3 f4 5 6

¥
8 7 6 4 0 8
| | | | |

¥
4 3 2 0 4 4
l | | | J
¥
2 1 0 2 2 2
[| | | J
¥
1 0 1 1 1 1
[| | | J
Y Fig. 2.15 Polyphase mergesort of 65

0 1 n 0 0 0 runs with six tapes.

ber of items to be sorted and N being the degree of the merge operations,
Polyphase promises a significant improvement over balanced merge.

Of course, the distribution of initial runs was carefully chosen in the
above examples. In order to find out which initial distributions of runs lead
to a proper functioning, we work backward, starting with the final distribu-
tion (last line in Fig. 2.15). Rewriting the tables of the two examples and
rotating each row by one position with respect to the prior row yields Tables
2.13 and 2.14 for six passes and for three and six tapes, respectively.

] a(ll) a(zl) 2 ai(l)
0 1 0 1
1 1 1 2
2 2 1 3
3 3 2 5
4 5 3 8
5 8 5 13
6 13 8 21

Table 2.13 Perfect Distribution of Runs on Two Tapes.

. T P
0 1 0 0 0 0 1
1 1 1 1 1 1 5
2 2 2 2 2 1 9
3 4 4 4 3 2 17
4 8 8 7 6 4 33
5 16 15 14 12 8 65

Table 2.14 Perfect Distribution of Runs on Five Tapes.

SEC. 2.3 SORTING SEQUENTIAL FILES 107

From Table 2.13 we can deduce the relations
a§*? = ap
al*" = af + af
and a{® =1, a{® = 0. Setting a{? = f;, we obtain
fir=fi+ fior, fori>1
fi=1 (2.41)
fo=0

These are the recursive rules (or recurrence relations) defining the so-called
Fibonacci numbers:

} for />0 (2.40)

0,1,1,2,3,5,8,13,21, 34,55, . ..

Each Fibonacci number is the sum of its two predecessors. As a con-
sequence, the numbers of initial run$ on the two tapes must be two con-
secutive Fibonacci numbers in order to make Polyphase with three tapes
work properly.

How about the second example (Table 2.14) with six tapes ? The formation
rules are easily derived as

a(sl+1) — a(ll)

a‘(‘1+l) — a(ll) + a(sl) — a(ll) -+ 0(1“'1)

agl+l) — a(ll) + a,‘{’ — a(ll) + a(ll—l) —+ a(II—Z) (242)
a(21+1) — a(lI) "l_ agl) — a(ll) + a(ll—l) + a(lI—Z) _|_ a(ll—3)

a(ll+l) — a(ll) + a(zl) — a(ll) _I_ a(ll—l) + a(lI—Z) + a(]l—}) + a(ll—4)

Substituting f; for a{’ yields
S =fitfioi +fica+ fiss + ficas for i>4
fo=1 (2.43)
fi=0, for i <4

These numbers are the so-called Fibonacci numbers of order 4. In gen-
eral, the Fibonacci numbers of order p are defined as follows:

f.(f)l:ffp)+f§f)1+"'+fz({)p: forin
S =1 (2.44)
fiP =0, for 0<<i<p
Note that the ordinary Fibonacci numbers are those of order 1.
We have now seen that the initial numbers of runs for a perfect Polyphase

Sort with n tapes are the sums of anyn — 1,n — 2,..., 1 (see Table 2.15)
consecutive Fibonacci numbers of order n — 2. This apparently implies

108 SORTING CHAP. 2

~
S
w

4 5 6 7 8

1 2 3 4 5 6 7
2 3 5 7 9 11 13
3 5 9 13 17 21 25
4 8 17 25 33 41 49
5 13 31 49 65 81 97
6 21 57 94 129 161 193
7 34 105 181 253 321 385
8 55 193 349 497 636 769
9 89 355 673 977 1261 1531
10 144 653 1297 1921 2501 3049
11 233 1201 2500 3111 4961 6073
12 377 2209 4819 7425 9841 12097
13 610 4063 9289 14597 19521 24097
14 987 7473 17905 28697 38721 48001
15 1597 13745 34513 56417 76806 95617
16 2584 25281 66526 110913 152351 190465
17 4181 46499 128233 218049 302201 379399
18 6765 85525 247177 428673 599441 755749
19 10946 157305 476449 842749 1189041 1505425
20 17711 289329 918385 1656801 2358561 2998753

Table 2.15 Numbers of Runs Allowing for Perfect Distribution.

that this method is only applicable to inputs whose number of runs is the
sum of n — 1 such Fibonacci sums. The important question thus arises:
What is to be done when the number of initial runs is not such an ideal sum?
The answer is simple (and typical for such situations): We simulate the
existence of hypothetical empty runs, such that the sum of real and hypothet-
ical runs is a perfect sum. The empty runs are called dummy runs. But this
is not really a satisfactory answer because it immediately raises the further
and more difficult question: How do we recognize dummy runs during
merging ? Before answering this question we must first investigate the prior
problem of initial run distribution and decide upon a rule for the distribution
of actual and dummy runs onto the n — 1 tapes.

In order to find an appropriate rule for distribution, however, we must
know how actual and dummy runs are merged. Clearly, the selection of a
dummy run from tape i means precisely that tape i is ignored during this
merge, resulting in a merge from fewer than n — 1 sources. Merging of
a dummy run from all n — 1 source tapes implies no actual merge operation,
but instead the recording of the resulting dummy run on the output tape.
From this we conclude that dummy runs should be distributed to the n — 1

SEC. 2.3 SORTING SEQUENTIAL FILES 109

tapes as uniformly as possible since we are interested in active merges from
as many source tapes as possible.

Let us forget dummy runs for a moment and consider the problem of
distributing an unknown number of runs onto n — 1 tapes. It is plain that
the Fibonacci numbers of order n — 2 specifying the desired numbers of
runs on each tape can be generated while the distribution progresses. Assum-
ing n = 6, for example, and referring to Table 2.14, we start by distributing
runs as indicated by the row with index / = 1 (1, 1, 1, 1, 1); if there are more
runs available, we proceed to the second row (2, 2, 2, 2, 1); if the source is
still unexhausted, the distribution proceeds according to the third row
4,4,4,3,2), and so on. We shall call the row index level. Evidently, the
larger the number of runs, the higher will be the level of Fibonacci numbers
which, incidentally, is equal to the number of merge passes or tape switchings
necessary for the subsequent sort.

The distribution algorithm can now be formulated in a first version as
follows:

1. Let the distribution goal be the Fibonacci numbers of order n — 2,
level 1.

2. Distribute according to the set goal.

3. If the goal is reached, compute the next level of Fibonacci numbers;
the difference between them and those on the former level constitutes
the new distribution goal. Return to step 2. If the goal cannot be reached
because the source is exhausted, terminate the distribution process.

The rules for calculating the next level of Fibonacci numbers are con-
tained in their definition (2.44). We can thus concentrate our attention on
step 2, where, with a given goal, the subsequent runs are to be distributed
one after the other onto the n — 1 tapes. It is here where the dummy runs have
to re-appear in our considerations.

Let us assume that when raising the level, we record the next goal by the
differences d, for i = 1...n — 1, where d; denotes the number of runs to
be put onto tape i in this step. We can now assume that we immediately put
d, dummy runs onto tape i and then regard the subsequent distribution as
the replacement of dummy runs by actual runs, each time recording a replace-
ment by subtracting 1 from d,. Thus, the d;’s will indicate the number of
dummy runs on tape i when the source becomes empty.

It is not known which algorithm will yield the optimal distribution, but
the following has proved to be a very good method. It is called horizontal
distribution (cf. Knuth, vol 3. p. 270), a term that can be understood by

110 SORTING CHAP. 2

regarding the runs as being piled up in the form of silos, as shown in Fig.
2.16 for n = 6, level 5 (cf. Table 2.14).

In order to reach an equal distribution of remaining dummy runs as
quickly as possible, their replacement by actual runs reduces the size of the
piles by picking off dummy runs on horizontal levels proceeding from left
to right. In this way, the runs are distributed onto the tapes as indicated by
their sequence numbers in Fig. 2.16.

o
6 | 2 | 3 4
gl_5 | 6 | 7 1 8]
I BT R I E R
‘; 13 14 15 16 17
18 | 19 |20 | 21 | 22 |
1 | 23 | 24 | 25 | 26 | 27 | Fig. 2.16 “Horizontal distribution” of
28 29 30 31 32 runs.

We are now in a position to describe the algorithm in the form of a
procedure called selecttape, which is called each time a run has been copied
and a new tape is to be selected for the next run. We assume the existence of
a variable j denoting the index of the current destination tape. a; and d;
denote the ideal and dummy distribution numbers for tape i.

J: tapeno;
a,d: array [tapeno) of index; (2.45)
level: integer

These variables are initialized with the following values:
a =1, d =1 fori=1...n—1
a, =0, d,=0 (dummy)
j=1
level =1

Note that selecttape is to compute the next row of Table 2.14, i.e., the values
ad ...a?, each time that the level is increased. The “next goal,” i.e., the
differences d, = a® — a~" are also computed at that time. The indicated
algorithm relies on the fact that the resulting d;’s decrease with increasing
index (decreasing stair in Fig. 2.16). (Note that the exception is the transi-
tion from level O to level 1; this algorithm must therefore be used starting
at level 1). Selecttape ends by decreasing d; by 1; this operation stands for
the replacement of a dummy run on tape j by an actual run.

SEC. 2.3 SORTING SEQUENTIAL FILES 111

procedure selecttape;
var i: tapeno; z. integer;
begin
if d[j] < d[j+1] then j := j+1 else
begin if d[j] = O then
begin level := level + 1; z := al[l];

for i := 1ton—1do (2.46)
begin d[i] := z+ali+1]—ali]; ali] := z+ali+1]
end
end ;
ji=1
end ;
dij] := d[j] —1
end

Assuming the availability of a routine to copy a run from the source
f0onto f[], we can formulate the initial distribution phase as follows (always
assuming that the source contains at least one run):

repeat selecttape; copyrun

until eof (f0)

Here, however, we must pause for a moment to recall the effect encountered
in distributing runs in the previously discussed natural merge algorithm:
The fact that two runs consecutively arriving at the same destination may
turn out to constitute a single run causes the assumed numbers of runs to
be incorrect. By devising the sort algorithm such that its correctness does
not depend on the number of runs, this side effect can safely be ignored. In
the Polyphase Sort, however, we are particularly concerned about keeping
track of the exact numbers of runs on each tape. Consequently, we cannot
afford to overlook the effect of such a coincidental merge.

An additional complication of the distribution algorithm therefore cannot
be avoided. It becomes necessary to retain the keys of the last item of the
last run on each tape. For this purpose, we introduce a variable

(2.47)

last: array [tapeno] of integer

A next attempt to describe the distribution algorithm could be

repeat selecttape;
if last[j] < fO1 .key then
“continue old run”; (2.48)
copyrun; last[j] := f01 .key
until eof (f0)

112 SORTING CHAP. 2

The obvious mistake lies in forgetting that /as#[j] has only obtained a
(defined) value after copying the first run! A correct solution first distributes
one run onto each of the » — 1 tapes without inspection of /ast[j]. The
remaining runs are distributed according to (2.49).

while —eof (f0) do
begin selecttape,
if last[j] < fO1 .key then
begin {continue old run} (2.49)
copyrun;
if eof (f0) then d[j] := d[j] + 1 else copyrun
end
else copyrun
end

Here, the assignment to /ast[j] is assumed to be included in the procedure
copyrun.

Now we are finally in a position to tackle the main polyphase merge sort
algorithm. Its principal structure is similar to the main part of the n-way
merge program: an outer loop whose body merges runs until the sources are
exhausted, an inner loop whose body merges a single run from each source
tape, and an innermost loop whose body selects the initial key and transmits
the involved item to the target file. The principal differences are the follow-

ing:

1. Instead of n/2, there is only one output tape in each pass.

2. Instead of switching n/2 input and n/2 output tapes after each pass, the
tapes are rotated. This is achieved by using a tape index mapping ¢.

3. The number of input tapes varies from run to run; at the start of each
run, it is determined from the counts d; of dummy runs. If d;, > 0 for all
i, then n — 1 dummy runs are pseudo-merged into one dummy run by
merely incrementing the count d, of the output tape. Otherwise, one run
is merged from all tapes with d; = 0, and d, is decremented for all other
tapes, indicating that one dummy run was taken off. We denote the
number of input tapes involved in a merge by k.

4. It is impossible to derive termination of a phase by the end-of-file status
of the n — 1st tape because more merges might be necessary involving
dummy runs from that tape. Instead, the theoretically necessary number
of runs is determined from the coefficients a;. The coefficients a! were
computed during the distribution phase; they can now be recomputed
“backward.”

The main part of the Polyphase Sort can now be formulated according

SEC. 2.3 SORTING SEQUENTIAL FILES 113

to these rules, assuming that all » — 1 tapes with initial runs are reset and
that the tape map is initially set to ¢, = i.

repeat {merge from t[1] ... t[n—1] to t[n]}
z := a[n—1]; d[n] := 0; rewrite(f[t[n]]);
repeat k := 0; {merge one run}
{determine no. k of active input tapes}
for i := 1ton—1do (2.50)
if d[i] > O then d[i] := d[i] —1 else
begin k := k-+1; ta[k] := ti]

end ;
if kK = 0 then d[n] := d[n] 4+ 1 else
“merge one real run from t[1] ... t[k]”;
z:=z—1
until z = 0;
reset(ft[n]]);

“rotate tapes in map t; compute a[i] on next level”;
rewrite(f[t[n]]); level := level — 1

until level = 0;

{sorted output is on t[1]}

The actual merge operation is almost identical with the program in the
n-way merge sort, the only difference being that the tape elimination algo-
rithm is somewhat simpler. The rotation of the tape index map and the cor-
responding counts d; (and the down-level recomputation of the coefficients
a,) is straightforward and can be inspected in detail from Program 2.16
which represents the Polyphase algorithm in its entirety

Program 2.16 Polyphasesort.

program polysort (output);
{ polyphase sort with n tapes}
const n = 6; {no. of tapes}
type item = record
key: integer
end ;
tape = file of item;
tapeno = 1..n;
var leng, rand: integer; {used to generate file}
eot: boolean,
buf: item;
fO: tape; {fO0 is the input tape with random numbers}
f: array [1 .. n] of tape;

procedure /ist (var f: tape; n: tapeno);
var z: integer,
begin z := 0;
writeln (TAPE’, n: 2);
while —eof (f) do
begin read(f, buf); write(output, buf.key: 5); z := z+1;
if z = 25 then
begin writeln (output); z := 0
end
end ;
if z 5= 0 then writeln (output); reset(f)
end {list} ;
procedure polyphasesort;
var i, j,mx,tn: tapeno,
k, level: integer;
a, d: array [tapeno] of integer;
{a[j] = ideal number of runs on tape j}
{d[j1 = number of dummy runs on tape j}
dn,x,min,z: integer;
last: array [tapeno] of integer;
{last[j] = key of tail item on tape j}
t,ta: array [tapeno) of tapeno;
{mappings of tape numbers}

procedure selecttape;
var i: tapeno; z:. integer;
begin
if d[jl < d[j+1] then j := j+1 else
begin if d[j] = O then
begin level := level + 1; z := a[l];

for i := 1ton—1do
begin d[i] := z + ali+1] — dlil; ali] := z + a[i+1]
end
end ;
ji=1
end ;
dljl := dljl —1
end ;

procedure copyrun;
begin {copy one run from f0 to tape j}
repeat read(f0, buf); write(f1jl, buf);
until eof (f0) V (buf key > fO7 .key);
last[j] := buf .key
end ;
Program 2.16 (Continued)

114

begin {distribute initial runs}
for i := 1torn—1do
begin a[i] := 1; d[i] := 1: rewrite(f]i])
end ;
level := 1; j := 1; a[n] := 0; d[n] := 0;
repeat selecttape; copyrun
until eof (f0) V (j=n—1);
while "eof (f) do
begin selecttape;
if last[j] << fO1 .key then
begin {continue old run}
copyrun;
if eof (f0) then d[j] := d[j] + 1 else copyrun
end
else copyrun
end ;
for i := 1to n—1 do reset(f[i]);
for i := 1tondotfi] := i;
repeat {merge from t[1] ... t[n—1] to t[n]}
z := aln—1]; d[n] := 0; rewrite(f[t[n]]);
repeat k := 0; {merge one run}
for i := 1 ton—1do
if d[i] > O then d[i] := d[i]—1 else
begin k := k+1; talk] := t[i]
end ;
if kK = O then d[n] := d[n] + 1 else
begin {merge one real run from t[1] ... t[k]}
repeat | 1= 1; mx :=1;
min ;= f[ta[1]]1 .key;
while i < k do
begin [:= i+1; x := f[talil]l .key;
if x < min then
begin min := x; mx := i
end
end ;
{ta[mx] contains minimal element; move it to t[n]}
read(f[talmx]), buf); eot := eof (f[tamx]]);
write(f{[n]l, buf);
if (buf .key > flta[mx]]1.key) \V eot then
begin {drop this tape}
talmx] 1= talk]; k 1= k—1
end
until £k = 0
end ;
Program 2.16 (Continued)

115

116 SORTING CHAP. 2

z 1= z—1
until z = 0;
reset(f{t[n]]); list(ft[n]), t[n]); {rotate tapes}
tn := f[n]; dn := d[n]; z := a[n—1];

for i := n downto 2 do
begin [i] := t[i—1]; d[i] := dli—1]; a[i] := a[i—1] — z
end ;

t{1] := tn; d[1] := dn;a[l] :=z;
{sorted output is on t[1]}
list(fIe[100, #[1]); level := level — 1
until level = 0;
end { polyphasesort} ;

begin {generate random file}
leng := 200; rand := 7789;
repeat rand := (131071*rand) mod 2147483647,
buf .key := rand div 2147484 ; write(f0, buf); leng := leng — 1
until leng = 0;
reset(f0); list(f0, 1);
polyphasesort
end .
Program 2.16 (Continued)

2.3.5. Distribution of Initial Runs

We were led to the sophisticated sequential sorting programs because the
simpler methods operating on arrays rely on the availability of a random-
access store sufficiently large to hold the entire set of data to be sorted. Very
often such a store is unavailable; instead, sufficiently large sequential storage
devices such as tapes must be used. We note that the sequential sorting
methods developed so far need practically no primary store whatsoever,
except for the file buffers and, of course, the program itself. However, it is
a fact that even small computers include some random access, primary store
that is almost always larger than what is needed by the programs developed
here. Failing to make optimal use of it cannot be justified.

The solution lies in combining array and file sorting techniques. In
particular, an adapted array sort may be used in the distribution phase of
initial runs with the effect that these runs do already have a length / of
approximately the size of the available primary data store. It is plain that
in the subsequent merge passes no additional array sorts could improve the
performance because the runs involved are steadily growing in length, and
thus they always remain larger than the available main store. As a result,
we may fortunately concentrate our attention on improving the algorithm
that generates initial runs.

SEC. 2.3 SORTING SEQUENTIAL FILES 117

Naturally, we immediately concentrate our search on the logarithmic
array sorting methods. The most suitable of them is the tree sort or Heap-
sort method (see Sect. 2.2.5). The heap may be regarded as a tunnel through
which all file components must pass, some quicker and some more slowly.
The least key is readily picked off the top of the heap, and its replacement
is a very efficient process. The action of funnelling a component from the
input tape f0 through a full “heap tunnel” 4 onto an output tape f[j] may be
described simply as follows:

write(f(1, A[1]);
read(f0, h[1]); (2.51)
sift(1, n)

“Sift” is the process described in Sect. 2.2.5 for sifting the newly inserted

component A[1] down into its proper place. Note that A[1] is the least item
on the heap. An example is shown in Fig. 2.17.

State before a transfer:
£(j)

fo
J_Tofe— w-[s]

State after the next transfer:

[Qolwl [=] =] [\

31 EIRE | 30 |

Fig. 2.17 Sifting a key through a heap.

The program eventually becomes considerably more complex because

—

. The heap #4 is initially empty and must first be filled.

2. Toward the end, the heap is only partially filled, and it ultimately
becomes empty.

3. We must keep track of the beginning of new runs in order to change

the output tape index j at the right time.

118 SORTING CHAP. 2

Before proceeding, let us formally declare the variables that are evidently
involved in the game:

var f0: tape;
f : array [tapeno] of tape;
h : array [1..m] of item;
Lr: integer

(2.52)

m is the size of the heap 4. We use the constant mh to denote m/2; [and r
are indices on 4. The funnelling process can then be divided into five distinct
parts.

1. Read the first mh items from 0 and put them into the upper half of the
heap where no ordering among the keys is prescribed.

2. Read another mh items and put them into the lower half of the heap,
sifting each item into its appropriate position (build heap).

3. Set / to m and repeat the following step for all remaining items on f0:
Feed A[1] to the appropriate output tape. If its key is less or equal to
the key of the next item on the input tape, then this next item belongs
to the same run and can be sifted into proper position. Otherwise, reduce
the size of the heap and place the new item into a second, “upper” heap
which is built up to contain the next run. We indicate the borderline
between the two heaps with the index /. Thus, the “lower” or current
heap consists of the items A[1]... A[l], the “upper” or next heap of
Al + 1]... A[m]. If I = 0, then change the output tape and reset / to
m.

4. Now the source is exhausted. First, set r to m; then flush the lower part
terminating the current run, and at the same time build up the upper
part and gradually relocate it into positions A[l + 1]. .. A[r].

S. The last run is generated from the remaining items in the heap.

We are now in a position to describe the five stages in detail as a com-
plete program, calling a procedure selecttape whenever the end of a run
is detected and some action to alter the index of the output tape has to be
invoked. In Program 2.17 a dummy routine is used instead; it merely counts
the number of runs generated. All elements are written onto tape f1.

If we now try to integrate this program with, for instance, the Polyphase
Sort, we encounter a serious difficulty. It arises from the following circum-
stances: The sort program consists in its initial part of a fairly complicated
routine for tape switching and relies on the availability of a procedure
copyrun which delivers exactly one run to the selected tape. The Heapsort
program, on the other hand, is a complex routine relying on the availability
of a closed procedure selecttape which simply selects a new tape. There would
be no problem if in one (or both) of the programs the desired procedure

SEC. 2.3 SORTING SEQUENTIAL FILES 119

would be called at a single place only; but instead, they are called at several
places in both programs.

This situation is best reflected by the use of a so-called coroutine; it is
suitable in those cases in which several processes coexist. The most typical
representative is the combination of a process which produces a stream of
information in distinct entities and a process which consumes this stream.
This producer-consumer relationship can be expressed in terms of two
coroutines. One of them may well be the main program itself.

The coroutine may be considered a procedure or subroutine that contains
one or more breakpoints. If such a breakpoint is encountered, then control

Program 2.17 Distribution of Initial Runs Through a Heap.

program distribute(f0, f 1,output);
{initial distribution of runs by heap sort}
const m = 30; mh = 15; {size of heap}
type item = record
key: integer
end ;
tape = file of item;
index = 0..m;
var Lr: index,
f0,f1: tape;
count: integer; {counter of runs}
h: array [1..m] of item; {heap}

procedure selecttape;
begin count := count + 1;

{dummy; count number of distributed runs}
end {selectiape} ;

procedure sift(l,r: index);
label 13;
var i,j: integer: x: item;
begin i := [; j := 2xi; x := h[i];
while j < r do
begin if j < r then
if A[j] .key > h[j+1] .key them j := j+1;
if x .key << h[j] .key then goto 13;
hli] = Aj; i :=J; J 1= 2%i
end ;
13: Ali] := x
end ;

120 SORTING CHAP. 2

begin {create initial runs by heapsort}
count := 0; reset(f0); rewrite(f1);
selecttape;
{step 1: fill upper half of heap h}
l:= m;
repeat read(f0, A[l]); | := I—1
until /| = mh;
{step 2: fill lower half of heap h}
repeat read(f0, h[l]); sift(lm); | := I—1
until / = 0;
{step 3: pass runs through full heap}
l:= m;
while —eof (f0) do
begin write(f1, A[1]);
if A[1] .key < f01 .key then
begin {new record belongs to same run}
read(f0, h[1]); sift(1,]);
end else
begin {new record belongs to next run}
h{1] := A[I]; sife(1,1—1);
read(f0, h[l]); if | < mh then sift(lm); | := I—1;
if / = 0 then
begin {heap is full; start new run}
1 := m; selecttape;
end
end
end ;
{step 4: flush lower part of heap}
ri= m;
repeat write(f1, h[1]);
A1) := A[; sife(1,1—1);
A} := hr]; r = r—1;
if I << mh then sift(lr); 1 := I—1
until / = 0;
{step 5: flush upper part of heap. generate last run}
selecttape;
while r > 0 do
begin write(f1,h[1]);
h[1] := A[r]; sift(Lr); r:= r—1
end ;
writeln (count)
end .

Program 2.17 (Continued)

CHAP. 2 EXERCISES 121

returns to the program which had called the coroutine. Whenever the corou-
tine is called again, execution is resumed at that breakpoint. In our example
we might consider the Polyphase Sort as the main program, calling upon
copyrun which is formulated as a coroutine. It consists of the main body of
Program 2.17 in which each call of selecttape now represents a breakpoint.
The test for end of file would then have to be replaced systematically by a
test of whether or not the coroutine had reached its endpoint. A logically
sound formulation would be eoc(copyrun) in place of eof (f0).

Analysis and conclusions. What performance can be expected from a
Polyphase Sort with initial distribution of runs by a Heapsort? We first
discuss the improvement to be expected by introducing the heap.

In a sequence with randomly distributed keys the expected average length
of runs is 2. What is this length after the sequence has been funnelled through
a heap of size m? One is inclined to say m, but, fortunately, the actual result
of probabilistic analysis is much better, namely, 2m (see Knuth, vol. 3,
p. 254). Therefore, the expected improvement factor is m.

An estimate of the performance of Polyphase can be gathered from
Table 2.15, indicating the maximal number of initial runs that can be sorted
in a given number of partial passes (levels) with a given number » of tapes.
As an example, with n = 6 tapes, and a heap of size m = 100, a file with up
to 165,680,100 initial runs can be sorted within 20 partial passes. This is a
remarkable performance.

Reviewing again the combination of Polyphase Sort and Heapsort, one
cannot help but be amazed at the complexity of this program. After all,
it performs the same easily defined task of re-ordering a set of items as is
done by any of the short programs based on the straight array sorting
principles. The moral of the entire chapter may be taken as an exhibition of
the following:

1. The intimate connection between algorithm and underlying data struc-
ture and particularly the influence of the latter on the former.

2. The sophistication by which the performance of a program can be
improved, even when the available structure for its data (sequence
instead of array) is rather ill-suited for the task.

EXERCISES
2.1. Which of the algorithms given by Programs 2.1 through 2.6, 2.8, 2.10, and
2.13 are stable sorting methods?

2.2. Would Program 2.2 still work correctly if / < r were replaced by / < r in
the while clause? Would it still be correct if the statements r := m—1 and

122

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

SORTING CHAP. 2

I := m+1 were simplified to r := m and [:= m? If not, find sets of values
a, ...a, upon which the altered program would fail.

Program and measure the execution time of the three straight sorting methods
on your computer and find weights by which the factors C and M have to
be multiplied to yield real time estimates.

Test the Heapsort Program 2.8 with various random input sequences and
determine the average number of times that the statement goto 13 is executed.
Since this number is relatively small, the following question becomes of inter-
est: Is there a way of extracting the test

x.key > a[jl.key
from the while loop?
Consider the following “obvious” version of the Partition Program 2.9:
i:=1;j:=mn;
x 1= a[(n+1) div 2].key;
repeat
while a[il.key < x do i :=i+1;
while x < afjl.keydoj:=j—1;
w = a[i]; ali] := alj]; alj] :=w
until [> j
Find sets of values a; ... a, for which this version fails.

Write a program that combines the Quicksort and Bubblesort algorithms
as follows: Use Quicksort to obtain (unsorted) partitions of length m
(1 < m < n); then use Bubblesort to complete the task. Note that the latter
may sweep over the entire array of » elements, hence, minimizing the “book-
keeping” effort. Find that value of m which minimizes the total sort time.

Note: Clearly, the optimum value of m will be quite small. It may there-
fore pay to let the Bubblesort sweep exactly m — 1 times over the array
instead of including a last pass establishing the fact that no further exchange
is necessary.

Perform the same experiment as in Exercise 6 with a straight selection sort
instead of a Bubblesort. Naturally, the selection sort cannot sweep over the
whole array; therefore, the expected amount of index handling is somewhat
greater.

Write a recursive Quicksort algorithm according to the recipe that the sorting
of the shorter partition should be tackled before the sorting of the longer
partition. Perform the former task by an iterative statement, the latter by a
recursive call. (Hence, your sort procedure will contain one recursive call
instead of two in Program 2.10 and none in Program 2.11.)

Find a permutation of the keys 1, 2, . . ., n for which Quicksort displays its
worst (best) behavior (n = 5, 6, 8).

Construct a natural merge program similar to the straight merge Program
2.13, operating on a double length array from both ends inward; compare
its performance with that of Program 2.13.

CHAP. 2 REFERENCES 123

2.11.

2.12.

2.13.

2.14.

2-4.

Note that in a (two-way) natural merge we do not blindly select the least
value among the available keys. Instead, upon encountering the end of a
run, the tail of the other run is simply copied onto the output sequence.
For example, merging of

results in the sequence
2, 3, 4, 5 6, 8 9, 1, 2
instead of
2, 3, 4 5 1, 2, 6, 8, 9,
which seems to be better ordered. What is the reason for this strategy?

What purpose does the variable fa in Program 2.15 serve? Under which
circumstances is the statement

begin rewrite (f[ta[mx]]); ...
executed, and when the statement
begin tx := ta[mx];...?

Why do we need the variable last in the Polyphase Sort Program 2.16, but
not in Program 2.15?

A sorting method similar to the Polyphase is the so-called Cascade merge
sort [2.1 and 2.9]. It uses a different merge pattern. Given, for instance, six
tapes T'l, ..., T6, the cascade merge, also starting with a “perfect distribu-
tion” of runs on T'1... TS5, performs a five-way merge from T'1...T5 onto
T6 until T5 is empty, then (without involving 76) a four-way merge onto
TS5, then a three-way merge onto T4, a two-way merge onto 73, and finally
a copy operation from 7T'1 onto 7'2. The next pass operates in the same way
starting with a five-way merge to T'1, and so on. Although this scheme seems
to be inferior to Polyphase because at times it chooses to leave some tapes
idle and because it involves simple copy operations, it surprisingly is superior
to Polyphase for (very) large files and for six or more tapes. Write a well-
structured program for the Cascade merge principle.

REFERENCES

Betz, B. K. and CARTER, ACM National Conf., 14, (1959), Paper 14.

Froyp, R. W., “Treesort” (Algorithms 113 and 243), Comm. ACM, 5, No. 8
(1962), 434, and Comm. ACM, 7, No. 12 (1964), 701.

GiLstAD, R. L., “Polyphase Merge Sorting—An Advanced Technique,”
Proc. AFIPS Eastern Jt. Comp. Conf., 18, (1960), 143-48.

Hoarg, C. A. R., “Proof of a Program: FIND,” Comm. ACM, 13, No. 1
(1970), 39-45.

124

2-5.

2-6.
2-7.

2-8.
2-9.
2-10.

2-11.

2-12.

2-13.

2-14.

SORTING CHAP. 2

, “Proof of a Recursive Program: Quicksort,” Comp. J., 14, No. 4
(1971), 391-95.

, “Quicksort,” Comp. J., 5, No. 1 (1962), 10-15.

KNuTH, D. E., The Art of Computer Programming, Vol. 3 (Reading, Mass.:
Addison-Wesley, 1973).

, The Art of Computer Programming, 3, pp. 86-95.
, The Art of Computer Programming, 3, p. 289.

LoriN, H., “A Guided Bibliography to Sorting,” IBM Syst. J., 10, No. 3
(1971), 244-54.

SHELL, D. L., “A Highspeed Sorting Procedure,” Comm. ACM, 2, No. 7
(1959), 30-32.

SINGLETON, R. C., “An Efficient Algorithm for Sorting with Minimal
Storage” (Algorithm 347), Comm. ACM, 12, No. 3 (1969), 185.

VaN EMDEN, M. H., “Increasing the Efficiency of Quicksort” (Algorithm
402), Comm. ACM, 13, No. 9 (1970), 563-66, 693.

WiLLiaMs, J. W. J., “Heapsort” (Algorithm 232), Comm. ACM, 7, No. 6
(1964), 347-48.

3 RECURSIVE ALGORITHMS

3.1. INTRODUCTION

An object is said to be recursive if it partially consists or is defined in
terms of itself. Recursion is encountered not only in mathematics, but

also in daily life. Who has never seen an advertising picture which contains
itself?

O O O [Iodd

Fig. 3.1 A recursive picture.

Recursion is a particularly powerful means in mathematical definitions.
A few familiar examples are those of natural numbers, tree structures, and
of certain functions:

125

126 RECURSIVE ALGORITHMS CHAP. 3

1. Natural numbers:

(a) 1 is a natural number.

(b) the successor of a natural number is a natural number.
2. Tree structures

(a) o is a tree (called the empty tree).

(b) If ¢, and ¢, are trees, then

AN\

L L

is a tree (drawn upside down).
3. The factorial function n! (for non-negative integers):
(@) 0! =1
(b) If n > 0, then n! = n-(n — 1)!

The power of recursion evidently lies in the possibility of defining an infinite
set of objects by a finite statement. In the same manner, an infinite number
of computations can be described by a finite recursive program, even if this
program contains no explicit repetitions. Recursive algorithms, however,
are primarily appropriate when the problem to be solved, or the function to be
computed, or the data structure to be processed are already defined in recur-
sive terms. In general, a recursive progfam can be expressed as a composition
® of base statements S; (not containing P) and P itself.

P = @[S, P] 3.1

The necessary and sufficient tool for expressing programs recursively is
the procedure or subroutine, for it allows a statement to be given a name by
which this statement may be invoked. If a procedure P contains an explicit
reference to itself, then it is said to be directly recursive; if P contains a
reference to another procedure Q which contains a (direct or indirect) refer-
ence to P, then P is said to be indirectly recursive. The use of recursion may
therefore not be immediately apparent from the program text.

It is common to associate a set of local objects with a procedure, i.e.,
a set of variables, constants, types, and procedures which are defined locally
to this procedure and have no existence or meaning outside this procedure.
Each time such a procedure is activated recursively, a new set of local,
bound variables is created. Although they have the same names as their
corresponding elements in the set local to the previous instance of the
procedure, their values are distinct, and any conflict in naming is avoided by
the rules of scope of identifiers: the identifiers always refer to the most recently
created set of variables. The same rule holds for procedure parameters which
by definition are bound to the procedure.

Like repetitive statements, recursive procedures introduce the possibility
of non-terminating computations, and thereby also the necessity of consider-

SEC. 3.2 WHEN NOT TO USE RECURSION 127

ing the problem of termination. A fundamental requirement is evidently that
the recursive call of a procedure P is subjected to a condition B, which at some
time becomes non-satisfied. The scheme for recursive algorithms may there-
fore be expressed more precisely as

P = if B then ®[S, P] (3.2)
or
P = @[S, if B then P] 3.3)

The basic technique of demonstrating that a repetition terminates is to
define a function f(x) (x is the set of variables in the program), such that
f(x) < 0 implies the terminating condition (of the while or repeat clause),
and to prove that f(x) decreases during each repetition. In the same manner,
termination of a recursive program can be proved by showing that each
execution of P decreases f(x). A particularly evident way to ensure termina-
tion is to associate a (value) parameter, say n, with P and to recursively call
P with n — 1 as parameter value. Replacement of the condition B by n > 0
then guarantees termination. This may be expressed by the following program
schemata:

P(n) = if n > 0 then ®[S,, P(n—1)] 3.9
P(n) = @®[S,, if n > 0 then P(n—1)] 3.5

In practical applications it is mandatory to show that the ultimate depth
of recursion is not only finite, but that it is actually small. The reason is that
upon each recursive activation of a procedure P some amount of storage is
required to accommodate its variables. In addition to these local bound vari-
ables, the current state of the computation must be recorded in order to be
retrievable when the new activation of P is terminated, and the old one has
to be resumed. We have already encountered this situation in the develop-
ment of the procedure Quicksort in Chap. 2. It was discovered that by
“naively” composing the program out of a statement that splits the n items
into two partitions and of two recursive calls sorting the two partitions, the
depth of recursion may in the worst case approach n. By a clever re-assess-
ment of the situation, it was possible to limit this depth to log n. The differ-
ence between » and log » is sufficient to convert a case highly inappropriate
for recursion into one in which recursion is perfectly practical.

3.2. WHEN NOT TO USE RECURSION

Recursive algorithms are particularly appropriate when the underlying
problem or the data to be treated are defined in recursive terms. This does not
mean, however, that such recursive definitions guarantee that a recursive
algorithm is the best way to solve the problem. In fact, the explanation of the

128 RECURSIVE ALGORITHMS CHAP. 3

concept of recursive algorithm by such inappropriate examples has been a
chief cause of creating widespread apprehension and antipathy toward the
use of recursion in programming, and of equating recursion with inefficiency.
This happened in addition to the fact that the widespread programming lan-
guage FORTRAN forbids the recursive use of subroutines, thus preventing
the invention of recursive solutions even when they are appropriate.

Programs in which the use of algorithmic recursion is to be avoided can
be characterized by a schema which exhibits the pattern of their composition.
The schema is that of (3.6) and, equivalently, of (3.7).

P = if B then (S ; P) (3.6)
P = (S; if B then P) 3.7
These schemata are natural in those cases in which values are to be com-

puted that are defined in terms of simple recurrence relations. Let us look at
the well-known example of the factorial numbers f; = i!:

i=0,1,2,3 4, 5, ...
fi=1,1,2,6,24,120,. ..

The “zeroth” number is explicitly defined as f, = 1, whereas the subsequent
numbers are usually defined—recursively—in terms of their predecessor:

Sirr =(G+D-f; (3.9
This formula suggests a recursive algorithm to proceed to the nth factorial
number. If we introduce the two variables / and F to denote the values i
and f; at the ith level of recursion, we find the computation necessary to pro-
ceed to the next numbers in the sequences (3.8) to be
1:=1+ 1; F .= IxF (3.10)
and, substituting (3.10) for S in (3.6), we obtain the recursive program
P=ifI <nthen (I:=1+ 1; F:= I+F; P)
I:=0;, F:=1; P
The first line of (3.11) is expressed in terms of our conventional programming
notation as

(3.8)

(3.11)

procedure P;

begin if / << n then
begin I := 1 + 1; F := I*F; P 3.12)
end

end

A more frequently used, but essentially equivalent, form is the one given
in (3.13). P is replaced by a so-called function procedure, i.e., a procedure
with which a resulting value is explicitly associated, and which therefore
may be used directly as a constituent of expressions. The variable F thereby

SEC. 3.2 WHEN NOT TO USE RECURSION 129

becomes superfluous; and the role of I is taken by the explicit procedure
parameter.

function F(I: integer): integer;

begin if 7 > O then F := IxF(I — 1)
else F:= 1 (3.13)
end

It is quite plain that in this case recursion can be replaced by simple iteration,
namely, by the program

I:=0; F:=1;

while 7 < n do
begin I := I + 1; F:= I*F
end

(3.14)

In general, programs corresponding to the general schemata (3.6) or (3.7)
should be transcribed into one according to schema (3.15)

P = (x := x,; while B do S) (3.15)
There are also more complicated recursive composition schemes that can

and should be translated into an iterative form. An example is the computa-
tion of the Fibonacci numbers which are defined by the recurrence relation

fib,,, = fib, + fib,_, forn>0 (3.16)
and fib, = 1, fib, = 0. A direct, naive approach leads to the program

function Fib(n: integer): integer;

begin if n = 0 then Fib := 0 else
if n = 1 then Fib := 1 else 3.17)
Fib := Fib(n—1) + Fib(n—2)

end

Computation of fib, by a call Fib(n) causes this function procedure to be
activated recursively. How often? We notice that each call with » > 1 leads
to 2 further calls, i.e., the total number of calls grows exponentially (see
Fig. 3.2). Such a program is clearly impractical.

Fig. 3.2 The 15 calls of Fib(n) for n = 5.

130 RECURSIVE ALGORITHMS CHAP. 3

However, it is plain that the Fibonacci numbers can be computed by an
iterative scheme that avoids the recomputation of the same values by use of
auxiliary variables such that x = fib, and y = fib;,

-1

{compute x = fib, for n > 0}
=1;x:=1;py:= 0;
whllez<ndo
beginz := x; i:=1i + 1;
X:=x +y;yi=z

(3.18)

end

(Note that the three assignments to x, y, z may be expressed by merely two
assignments without need for the auxiliary variable z: x := x + y;
yi=x-—y).

Thus, the lesson to be drawn is to avoid the use of recursion when there
is an obvious solution by iteration.

This, however, should not lead to shying away from recursion at any
price. There are many good applications of recursion, as the following para-
graphs and chapters will demonstrate. The fact that implementions of recur-
sive procedures on essentially non-recursive machines exist proves that for
practical purposes every recursive program can be transformed into a purely
iterative one. This, however, involves the explicit handling of a recursion
stack, and these operations will often obscure the essence of a program to
such an extent that it becomes most difficult to comprehend. The lesson is
that algorithms which by their nature are recursive rather than iterative should
be formulated as recursive procedures. In order to appreciate this point, the
reader is referred to Programs 2.10 and 2.11 for a comparison.

The remaining part of this chapter is devoted to the development of some
recursive programs in situations in which recursion is justifiably appropriate.
Also Chaps. 4 and 5 make great use of recursion in cases in which the underly-
ing data structures let the choice of recursive solutions appear obvious and
natural.

3.3. TWO EXAMPLES OF RECURSIVE
PROGRAMS

The attractive graphic pattern shown in Fig. 3.5 consists of the super-
position of five curves. These curves follow a regular pattern and suggest
that they might be drawn by a plotter under control of a computer. Our
goal is to discover the recursion schema, according to which the plotting
program might be constructed. Inspection reveals that three of the super-
imposed curves have the shapes shown in Fig. 3.3; we denote them by H,,
H,, and H;. The figures show that H,,, is obtained by the composition of
four instances of H, of half size and appropriate rotation and by tying together

SEC. 3.3 TWO EXAMPLES OF RECURSIVE PROGRAMS 131

H, H, Hj
Fig. 3.3 Hilbert curves of order 1, 2, and 3.

the four H;’s by three connecting lines. Notice that H, may be considered as
consisting of four instances of an empty H, connected by three straight lines.
H, is called the Hilbert curve of order i after its inventor D. Hilbert (1891).

Let us assume that our basic tools for plotting are two coordinate vari-
ables x and y, a procedure setplot (setting the pen to coordinates x and y),
and a procedure plot (moving the drawing pen from its present position to the
position indicated by x and y).

Since each curve H, consists of four half-sized copies of H,_,, it is natural
to express the procedure to draw H, as a composition of four parts, each of
them drawing H,_, in appropriate size and rotation. If we denote the four
parts by 4, B, C, and D and the routines drawing the interconnecting lines
by arrows pointing in the corresponding direction, then the following recur-
sion scheme emerges (see Fig. 3.3).

5A: D—A|A—B
M B: C'1B—>Bl A
9C: B>C1C«D
t1D: Al D« D1 C

(3.19)

If the length of the unit line is denoted by A, the procedure corresponding
to the scheme A is readily expressed by using recursive activations of analo-
gously designed procedures B and D and of itself.

procedure A(i: integer);
begin if i > 0 then
begin D(i—1); x := x—h; plot;
A(i—1); y := y—h; plot,
A@—1); x := x-+h; plot;
B(i—1)

(3.20)

end
end

This procedure is initiated by the main program once for every Hilbert curve
to be superimposed. The main program determines the initial point of the

132 RECURSIVE ALGORITHMS CHAP. 3

curve, i.e., the initial values of x and y, and the unit increment A. h0 denotes
the full width of the page and must satisfy 40 = 2* for some k > n (see
Fig. 3.4). The entire program draws the n Hilbert curves H, . .. H, (see Pro-
gram 3.1 and Fig. 3.5).

v

ho

X
hg Fig. 3.4 The unit frame.

Program 3.1 Hilbert Curves.

program Hilbert(pf,output);
{plot Hilbert curves of orders 1 to n}
const n = 4; h0 = 512;
var i,h,x,y,x0,y0: integer;
pf: file of integer; {plot file}
procedure A(i: integer);
begin if i > 0 then
begin D(i—1); x := x—h; plot,
A(i—1); y := y—h; plot;
A(i—1); x := x+h; plot;
B(i—1)
end
end ;
procedure B(i: integer);
begin if i > O then
begin C(i—1); y := y-+h; plot;
B(i—1); x := x-h; plot;
B(i—1); y := y—h; plot;
A@—1)
end
end ;
procedure C(i: integer);
begin if i > O then
begin B(i—1); x := x-+h; plot,
C@i—1); y := y-+h; plot;
C(i—1); x := x—h; plot;
D(@i—1)
end
end ;

SEC. 3.3 TWO EXAMPLES OF RECURSIVE PROGRAMS 133

procedure D(i: integer);
begin if i > O then
begin A(i—1); y := y—h; plot,;
D(@i—1); x := x—h; plot,;
D(i—1); y := y+h; plot;
C(i—1)
end
end ;
begin startplot;
i:=0; h:= h0; xO0 := h div 2; y0 := x0;
repeat {plot Hilbert curve of order i}
i:=i+1; h:= h div 2;
x0 := x0 + (h div 2); y0 := y0 + (4 div 2);
x := x0; y := »0; setplot,
A(i)
until | = n;
endplot
end .

Program 3.1 (Continued)

EREH BB 0 B

Eq_iu% Dﬁ D[rjutflc iy
JM%WEW—J J% : E}]
DE—|0 214

LLF N
BT
et | |

== g
Ll ol &
] —u PE £il=
iﬁgu* ﬁﬁ ﬁ!“. 1urJ =l

Fig. 3.5 Hilbert curves H; ... Hs.

Eﬁ

= £
i
lgﬁ
=il

=

H

i
|8
H

=yt

=

1| i

{

|

I
1| =
-5 0

]

134 RECURSIVE ALGORITHMS CHAP. 3

A similar but slightly more complex and aesthetically more sophisticated
example is shown in Fig. 3.7. This pattern is again obtained by superimposing
several curves, two of which are shown in Fig. 3.6. S; is called the Sierpinski
curve of order i. What is the recursion scheme ? One is tempted to single out

S, S,

Fig. 3.6 Sierpinski curves of orders 1 and 2.

Fig. 3.7 Sierpinski curves S; ... Ss.

SEC. 3.3 TWO EXAMPLES OF RECURSIVE PROGRAMS 135

the leaf S, as a basic building block, possibly with one edge left off. But this
does not lead to a solution. The principal difference between Sierpinski
curves and Hilbert curves is that Sierpinski curves are closed (without
crossovers). This implies that the basic recursion scheme must be an open
curve and that the four parts are connected by links not belonging to the
recursion pattern itself. Indeed, these links consist of the four straight lines
in the outermost four “corners,” drawn in boldface in Fig. 3.6. They may
be regarded as belonging to a non-empty initial curve S,, which is a square
standing on one corner.

Now the recursion schema is readily established. The four constituent
patterns are again denoted by A4, B, C, and D, and the connecting lines are
drawn explicitly. Notice that the four recursion patterns are indeed identical
except for 90° rotations.

The base pattern of the Sierpinski curves is

S:A~>B« C~ D" (3.21)
and the recursion patterns are

A:A~B=D "4

B:B<ClA—-B

C:C~D<=B«C

D:D~"A4 1 C~D

(Double arrows denote lines of double unit length.)

If we use the same primitives for plot operations as in the Hilbert curve
example, the above recursion scheme is transformed without difficulties into
a (directly and indirectly) recursive algorithm.

(3.22)

procedure A(i: integer);
begin if i > O then
begin A(i—1); x := x+h; y := y—h; plot;
B(i—1); x := x+2«h; plot;
D(@i—1); x := x+h; y := y+h; plot;
A(i—1)

(3.23)

end
end

This procedure is derived from the first line of the recursion scheme (3.22).
Procedures corresponding to the patterns B, C, and D are derived analo-
gously. The main program is composed according to the pattern (3.21).
Its task is to set the initial values for the drawing coordinates and to deter-
mine the unit line length A according to the size of the paper, as shown in
Program 3.2. The result of executing this program with n = 4 is shown in
Fig. 3.7. Note that S, is not drawn.

136 RECURSIVE ALGORITHMS CHAP. 3

The elegance of the use of recursion in these examples is obvious and
convincing. The correctness of the programs can readily be deduced from
their structure and composition patterns. Moreover, the use of the explicit
level parameter i according to schema (3.5) guarantees termination since the

Program 3.2 Sierpinski Curves.

program Sierpinski (pf,output);
{plot Sierpinski curves of orders 1 to n}
const n = 4; h0 = 512;
var i,h,x,y,x0,y0: integer;
pf: file of integer; {plot file}
procedure A(i: integer);
begin if i > 0 then
begin A(i—1); x := x+h; y := y—h; plot;
B(i—1); x := x + 2+h; plot;
D(i—1); x := x+h; y := y-+h; plot;
A(i—1)
end
end ;
procedure B(i: integer);
begin if i > O then
begin B(i—1); x := x—h; y := y—h; plot;
C(i—1); y := y — 2xh; plot;
A(i—1); x := x+h; y := y—h; plot;
B(i—1)
end
end ;
procedure C(i: integer);
begin if i > O then
begin C(i—1); x := x—h; y := y-+h; plot;
D(i—1); x := x — 2xh; plot;
B(i—1); x := x—h; y := y—h; plot;
C@i—1)
end
end ;
procedure D(i: integer);
begin if i/ > O then
begin D(i—1); x := x-+h; y := y-+h; plot;
A(i—1); y := y + 2+h; plot;
C(@i—1); x := x—h; y := y+h; plot;
D(@i—1)
end
end ;

b

SEC. 3.4 BACKTRACKING ALGORITHMS 137

begin startplot;
i:=0; h:= hO div 4; x0 := 2+h; y0 := 3*h;
repeat i := i+1; x0 := x0—h;
h := h div 2; y0 := y0-+h;
x := x0; y := y0; setplot;
A@); x := x+h; y := y—h; plot;
B(i); x := x—h; y := y—h; plot;
C(); x := x—h; y := y+h; plot;
D(i); x := x+h; y := y+h; plot;
until i = n;
endplot
end .

Program 3.2 (Continued)

depth of recursion cannot become greater than ». In contrast to this recursive
formulation, equivalent programs that avoid the explicit use of recursion are
extremely cumbersome and obscure. The reader is urged to convince himself
of this claim by trying to understand the programs shown in [3-3].

3.4. BACKTRACKING ALGORITHMS

A particularly intriguing programming endeavor is the subject of “general
problem solving.” The task is to determine algorithms for finding solutions
to specific problems not by following a fixed rule of computation, but by
trial and error. The common pattern is to decompose the trial-and-error
process into partial tasks. Often these tasks are most naturally expressed
in recursive terms and consist of the exploration of a finite number of sub-
tasks. We may generally view the entire process as a trial or search process
that gradually builds up and scans (prunes) a tree of subtasks. In many
problems this search tree grows very rapidly, usually exponentially, depend-
ing on a given parameter. The search effort increases accordingly. Frequently,
the search tree can be pruned by the use of heuristics only, thereby reducing
computation to tolerable bounds.

It is not our aim to discuss general heuristic rules in this text. Rather,
the general principle of breaking up such problem-solving tasks into subtasks
and the application of recursion is to be the subject of this chapter. We
start out by demonstrating the underlying technique by using an example,
namely, the well-known knight’s tour.

Given is a n X n board with n? fields. A knight—being allowed to move
according to the rules of chess—is placed on the field with initial coordinates
X0, Vo. The problem is to find a covering of the entire board, if there exists
one, i.e., to compute a tour of n? — 1 moves such that every field of the
board is visited exactly once.

138 RECURSIVE ALGORITHMS CHAP. 3

The obvious way to reduce the problem of covering n? fields is to consider
the problem of either performing a next move or finding out that none is
possible. Let us therefore define an algorithm trying to perform a next move.
A first approach is shown in (3.24).

procedure try next move;
begin initialize selection of moves;
repeat select next candidate from list of next moves;,
if acceptable then
begin record move;
if board not full then
begin try next move;
if not successful then erase previous recording
end
end
until (move was successful) \/ (no more candidates)
end

(3.24)

If we wish to be more precise in describing this algorithm, we are forced
to make some decisions on data representation. An obvious step is to repre-
sent the board by a matrix, say 4. Let us also introduce a type to denote
index values:

type index = 1..n;

var h: array [index, index] of integer (329

The decision to represent each field of the board by an integer instead of a
Boolean value denoting occupation is because we wish to keep track of the
history of successive board occupations. The following convention is an
obvious choice:

h[x,y] =0: field {x, y)> has not been visited
hlx,y] =i: field {x, y)> has been visited in the ith move (3.26)
1<i<n?

The next decision concerns the choice of appropriate parameters. They
are to determine the starting conditions for the next move and also to report
on it< success. The former task is adequately solved by specifying the coordi-
nates x, y from which the move is to be made and by specifying the number
i of the move (for recording purposes). The latter task requires a Boolean
result parameter: g = true denotes success; ¢ = false failure.

Which statements can now be refined on the basis of these decisions?
Certainly “board not full” can be expressed as “i < n%.” Moreover, if we
introduce two local variables u and v to stand for the coordinates of possible
move destinations determined according to the jump pattern of knights,
then the predicate “acceptable” can be expressed as the logical combination
of the conditions that the new field lies on the board, i.e., 1 <u < n and

SEC. 3.4 BACKTRACKING ALGORITHMS 139

1 <wv < n, and that it has not been visited previously, i.e., Afu, v] = 0.
The operation of recording the legal move is expressed by the assignment
hlu, v] := i, and the cancellation of this recording as 4[u, v] := 0. If a local
variable ¢l is introduced and used as the result parameter in the recursive
call of this algorithm, then g1 may be substituted for “move was successful.”
Thereby we arrive at the formulation shown in (3.27).

procedure try (i: integer; x,y: index; var q: boolean);
var u,v: integer; ql: boolean;
begin initialize selection for moves;
repeat let u,v be the coordinates of the next move defined
by the rules of chess;
if (1<u<n) A (I<v<n) A (h[u,w]=0) then
begin h[u,v] := i;
if i < sgr(n) then
begin try(i+1,u,v,q1);
if —gl then Afu,v] := 0

(3.27)

end else gl := true
end
until g1 \/ (no more candidates);
q:=ql

end

Just one more refinement step will lead us to a program expressed fully
in terms of our basic programming notation. We should note that so far the
program was developed completely independently of the laws governing
the jumps of the knight. This delaying of considerations of particularities
of the problem was quite deliberate. But now is the time to take them into
account.

Given a starting coordinate pair {x, y)>, there are eight potential can-
didates for coordinates {u, v> of the destination. They are numbered 1 to
8 in Fig. 3.8.

A simple method of obtaining u, v from x, y is by addition of the coordi-.
nate differences stored in either an array of difference pairs or in two arrays

RN

T Fig. 3.8 The eight possible moves of a
X knight.

program knightstour (output);
const n = 5; nsq = 25;
type index = 1..n;
var i,j: index;
q: boolean;
s: set of index;
a,b: array [1. .8] of integer;
h: array [index, index] of integer;
procedure try (i: integer; x,y: index; var q: boolean);
var k,u,v: integer; ql: boolean;
begin k := 0;
repeat k := k+1; ql := false;
u:=x 4+ alk]; v := y 4 blk];
if (# in s)A(v in s) then
if Alu,p] = O then
begin Auv] := i;
if i < nsq then
begin rry (i+1,u,v,ql);
if —gql then Afuw] := 0

end else gl := true
end

until g1 vV (k=8);
q := ql

end {rry} ;

begin s := [1,2,3,4,5];
all] ;= 2; b[1] := 1;
a2l ;= 1; b[2) := 2
a3l := —1; B3] := 2;
al4] := —2; b[4] := 1;
a5} .= —2; b[5] := —1;
al6] .= —1; b[6] := —2;
a7l := 1; b[7] := —2;
al8] := 2; b8} := —1;
for i ;=1 to n do

for j := 1 to n do A[i,j] := O;

A[1,1] := 1; ry(2,1,1,9);

if g then
for i := 1 to n do
begin for j := 1 to n do write(h[i,j]:5);

writeln

end

else writeln(" NO SOLUTION °)

end .

Program 3.3 Knight's Tour.

140

SEC. 3.4 BACKTRACKING ALGORITHMS 141

of single differences. Let these arrays be denoted by a and b, appropriately
initialized. Then an index k may be used to number the “next candidate.”
The details are shown in Program 3.3. The recursive procedure is initiated
by a call with the coordinates x,, y, of that field as parameters, from
which the tour is to start. This field must be given the value 1; all others are
to be marked free.

H[xo,J)o]:: 19 try (2’ Xo0s Vos q)

One further detail must not be overlooked: A variable h[u, v] does exist
only if both u and v lie within the array bounds 1. .. n. Consequently, the
expression in (3.27), substituted for “acceptable” in (3.24), is valid only
if its first two constituent terms are true. A proper reformulation is shown
in Program 3.3 in which, furthermore, the double relation 1 <u <n is
replaced by the expression u in [1, 2, ..., n], which for sufficiently small »n
is possibly more efficient (see Sect. 1.10.3). Table 3.1 indicates solutions
obtained with initial positions <1, 1>, (3, 3)> for n = 5 and {1, 1> for n = 6.

It is possible to replace the result parameter ¢ and the local variable g1
by a global variable, thereby simplifying the program somewhat.

1 6 [16 | 10 | 21 23 10 15 4 | 25
14 9 | 20 5 16 16 5 | 24 9 14
19 2 7 |22 |11 1 22 1 18 3

8 | 13 | 24 17 4 6 17 20 13 8
25 | 18 3 12 | 23 21 12 7 2 19

34 | 25 12 15 6 | 27

17 2 | 33 8 |13 10

32| 35 | 24 | 21 28 5

23 18 3 30 9 | 20

36 | 31 22 19 4 |29

Table 3.1 Three Knights’ Tours.

142 RECURSIVE ALGORITHMS CHAP. 3

What abstractions can now be made from this example? Which pattern
does it exhibit that is typical for this kind of “problem-solving” algorithms?
What does it teach us? The characteristic feature is that steps toward the
total solution are attempted and recorded that may later be taken back and
erased in the recordings when it is discovered that the step does not possibly
lead to the total solution, that the step leads into a “dead-end street.” This
action is called backtracking. The general pattern (3.28) is derived from
(3.24), assuming that the number of potential candidates in each step is finite.

procedure try;
begin intialize selection of candidates;
repeat select next;
if acceptable then
begin record it;
if solution incomplete then
begin try next step;
if not successful then cancel recording
end
end
until successful \/ no more candidates
end

(3.28)

Actual programs may, of course, assume various derivative forms of
schema (3.28). A frequently encountered pattern uses an explicit level para-
meter indicating the depth of recursion and allowing for a simple termina-
tion condition.

If, moreover, at each step the number of candidates to be investigated is
fixed, say m, then the derived schema (3.29) applies; it is to be invoked by
the statement “try(1)”.

procedure try(i: integer);
var k: integer;
begin k := 0;
repeat k := k-1; select k-th candidate;
if acceptable then
begin record it;
if i < n then (3.29)
begin try(i+1);
if not successful then cancel recording
end
end
until successful \/ (k = m)
end

SEC. 3.5 THE EIGHT QUEENS PROBLEM 143

The remainder of this chapter is devoted to the treatment of three more
examples. They display various incarnations of the abstract schema (3.29)
and are included as further illustrations of the appropriate use of recursion.

3.5. THE EIGHT QUEENS PROBLEM

The problem of the eight queens is a well-known example of the use of
trial-and-error methods and of backtracking algorithms. It was investigated
by C. F. Gauss in 1850, but he did not completely solve it. This should not
surprise anyone. After all, the characteristic property of these problems is
that they defy analytic solution. Instead, they require large amounts of exact-
ing labor, patience, and accuracy. Such algorithms have therefore gained
relevance almost exclusively through the automatic computer, which possesses
these properties to a much higher degree than people, and even geniuses, do.

The eight queens problem is stated as follows (see also [3-4]): Eight queens
are to be placed on a chess board in such a way that no queen checks against
any other queen.

Using the schema of Eq. (3.29) as a template, we readily obtain the follow-
ing crude version of a solution:

procedure try(i: integer);
begin
initialize selection of positions for i-th queen;
repeat make next selection;
if safe then
begin setqueen;;
if i < 8 then (3.30)
begin try(i+1);
if not successful then remove queen
end
end
until successful \/ no more positions
end

In order to proceed, it is necessary to make some commitments concerning
the data representation. Since we know from the rules of chess that a queen
checks all other figures lying in either the same column, row, or diagonals on
the board, we infer that each column may contain one and only one queen,
and that the choice of a position for the ith queen may be restricted to the
ith column. The parameter i therefore becomes the column index, and the
selection process for positions then ranges over the eight possible values for
a row index j.

There remains the question of representing the eight queens on the board.
An obvious choice would again be a square matrix to represent the board,

144 RECURSIVE ALGORITHMS CHAP. 3

but a little inspection reveals that such a representation would lead to fairly
cumbersome operations for checking the availability of positions. This is
highly undesirable since it is the most frequently executed operation. We
should therefore choose a data representation which makes checking as
simple as possible. The best recipe is to represent as directly as possible that
information which is truly relevant and most often used. In our case this is
not the position of the queens, but whether or not a queen has already been
placed along each row and diagonals. (We already know that exactly one is
placed in each column k for 1 << k <Ci). This leads to the following choice
of variables:
var x : array [l .. 8] of integer;

a : array [l .. 8] of Boolean;

b : array [bl .. b2] of Boolean;

¢ : array [cl .. c2] of Boolean;

(3.31)

where

x[i] denotes the position of the queen in the ith column;
a[j] means no queen lies in the jth row;

b[k] means no queen occupies the kth v -diagonal;

c[k] means no queen sits on the kth ™ -diagonal.

The choice for index bounds b1, 52, cl, c2 is dictated by the way that
indices of b and ¢ are computed ; we note that in a v -diagonal all fields have
the same sums of their coordinates i and j, and that in a~, -diagonal the coor-
dinate differences i — j are constant. The appropriate solution is shown in
Program 3.4.

Given these data, the statement setqueen is elaborated to

x[i] := j; alj] := false; bli+j] := false; cli—j] := false (3.32)
The statement removequeen is refined into
alj] := true; bli+j] := true; cli—j] := true (3.33)

1%

© N O O A W N
i

g Fig. 3.9 A solution to the eight queens
1 2 3 4 5 6 7 @8 problem

SEC. 3.5 THE EIGHT QUEENS PROBLEM 145

and the condition safe s fulfilled if the field {7, j> lies in a row and in diagonals
which are still free (represented by true). Hence, it can be expressed by the
logical expression

aljl A bli +j1 A cli —J] (3.39
This completes the development of this algorithm, which is shown in full

as Program 3.4. The computed solution is x = (1,5, 8,6, 3,7, 2,4) and
is shown in Fig. 3.9.

program eightqueenl(output);
{find one solution to eight queens problem}
var i: integer; q: boolean;

a: array [1.. 8] of boolean;

b: array [2..16] of boolean;

c: array [—7.. 7] of boolean;

x: array [1.. 8] of integer;

procedure try(i: integer; var q: boolean);
var j: integer;
begin j := 0;
repeat j := j+1; q := false;
if alj] ABli+j] Acli—/] then
begin x[i] := j;
aljl := false; bli+j] := false; cli—j] := false;
if i < 8 then
begin try (i+1,9);

if —gq then
begin a[j] := true; bli+j] := true; c[i—j] := true
end
end else g := true
end
until ¢ V (j=38)
end {1ry} ;
begin
for i := 1 to 8 do dafi] := true;
for i := 2 to 16 do B[i] := true;
for i := —7 to 7 do c[i] := true;
try (Lg);
if g then
for i := 1 to 8 do write (x[i]: 4);
writeln
end .

Program 3.4 Eight Queens.

146 RECURSIVE ALGORITHMS CHAP. 3

Before we abandon the context of the chess board, the eight queens exam-
ple is to serve as an illustration of an important extension of the trial-and-
error algorithm. The extension is—in general terms—to find not only one,
but all solutions to a posed problem.

The extension is easily accommodated. We are to recall the fact that
the generation of candidates must progress in a systematic manner which
guarantees that no candidate is generated more than once. This property of
the algorithm corresponds to a search of the candidate tree in a systematic
fashion in which every node is visited exactly once. It allows—once a solu-
tion is found and duly recorded—merely to proceed to the next candidate
delivered by the systematic selection process. The general schema is derived
from (3.29) and shown in (3.35)

procedure try(i: integer);
var k: integer;
begin
for k := 1 to m do
begin select k-th candidate;
if acceptable then
begin record it,
if i < n then try(i+1) else print solution;
cancel recording
end
end
end

(3.35)

Note that because of the simplification of the termination condition of the
selection process to the single term k = m, the repeat statement is appro-
priately replaced by a for statement. It comes as a surprise that the search for
all possible solutions is realized by a simpler program than the search for a
single solution.

The extended algorithm to determine all 92 solutions of the eight queens
problem is shown in Program 3.5. Actually, there are only 12 significantly
differing solutions; our program does not recognize symmetries. The 12

Program 3.5 Eight Queens.

program eightqueens (output);

var i: integer;

carray [1.. 8] of boolean;
:array [2..16] of boolean;
:array [—7.. 7] of boolean;
carray [1.. 8] of integer;

= o o8

SEC. 3.5 THE EIGHT QUEENS PROBLEM 147

procedure print;
var k: integer;

begin for k£ := 1 to 8 do write(x[k]: 4);
writeln

end {print} ;

procedure try(i: integer);
var j: integer;
begin
for j:= 1 to 8 do
if a[j] Abli+j] Acli—j] then
begin x[i] := j;
alj] := false; bli+j] := false; cli—j] := false;
if i < 8 then try(i+1) else print;
aljl := true; bli+j] := true; c[i—j] := true

end
end {rry};
begin
for i:= 1 to 8 do qfi] := true;
for i := 2 to 16 do B[i] := true;
for i := —7 to 7 do c[i] := true;
try (1)
end .

Program 3.5 (Continued)

solutions generated first are listed in Table 3.2. The numbers N to the right
indicate the frequency of execution of the test for safe fields. Its average over
all 92 solutions is 161.

X, Xp X3 X4 X5 Xg X7 Xg N
1 56 8 6 3 7 2 4 876
1 6 8 3 7 4 2 5 264
17 4 6 8 2 5 3 200
17 5 8 2 4 6 3 136
2 46 83 1 7 5 504
2 57 1 3 8 6 4 400
2 57 41 8 6 3 72
2 6 1 7 4 8 3 5 280
2 6 8 3 1 4 7 5 240
2 7 3 6 8 5 1 4 264
2 7 5 81 4 6 3 160
2 86 1 3 5 7 4 336

Table 3.2 Twelve Solutions to the Eight Queens Problem.

148 RECURSIVE ALGORITHMS CHAP. 3

3.6. THE STABLE MARRIAGE PROBLEM

Assume that two disjoint sets 4 and B of equal cardinality » are given.
Find a set of n pairs (a, b) such that ain 4 and b in B satisfy some constraints.
Many different criteria for such pairs exist; one of them is the rule called
the “stable marriage rule.”

Assume that A is a set of men and B is a set of women. Each man and each
woman has stated distinct preferences for their partners. If the » couples are
chosen such that there exists a man and a woman who are not married, but
who would both prefer each other to their actual marriage partners, then the
assignment is said to be unstable. If no such pair exists, it is called stable.

This situation characterizes many related problems in which assignments
have to be made according to preferences, such as, for example, the choice
of a school by students, the choice of recruits by different branches of the
armed services, etc. The example of marriages is particularly intuitive; note,
however, that the stated list of preferences is invariant and does not change
after a particular assignment has been made. This rule simplifies the problem,
but it also represents a distortion of reality (called abstraction).

One way to search for a solution is to try pairing off members of the two
sets one after the other until the two sets are exhausted. Setting out to find al/
stable assignments, we can readily sketch a solution by using the program
schema (3.35) as a template. Let ¢try(m) denote the algorithm to find a partner
for man m, and let this search proceed in the order of the man’s list of stated
preferences. The first version based on these assumptions is (3.36)

procedure try(m: man);
var r: rank;
begin
for r := 1 to n do
begin pick the r-th preference of man m;
if acceptable then
begin record the marriage; (3.36)
if m is not last man then try(succ(m))
else record the stable set;
cancel the marriage
end
end
end

Again, we have arrived at the point where we cannot proceed without
first making some decisions about data representation. We introduce three
scalar types, and, for reasons of simplicity, let their values be the integers
1 to n. Although the three types are formally identical, their designation

SEC. 3.6 THE STABLE MARRIAGE PROBLEM 149

by distinct names contributes significantly to clarity. In particular, it can
more easily be made evident what a variable stands for.

type man =1..n;
woman = 1..n; 3.37)
rank = 1..n

The initial data are represented by two matrices that indicate the men’s
and women’s preferences.

var wmr: array [man, rank] of woman

mwr: array [woman, rank] of man (3.38)

Accordingly, wmr[m] denotes the preference list of man m, i.e., wmr[m][r] =
wmr[m, r] is the woman who occupies the rth rank in the list of man m.
Similarly, mwr[w] is the preference list of woman w, and mwr{w, r] is her rth
choice.

Rank 1 2 3 4 5 6 7 8

Man 1 selects woman 7 2 6 5 1 3 8 4
2 4 3 2 6 8 1 7 5

3 3 2 4 1 8 5 7 6

4 3 8 4 2 5 6 7 1

5 8 3 4 5 6 1 7 2

6 8 7 5 2 4 3 1 6

7 2 4 6 3 1 7 5 8

8 6 1 4 2 7 5 3 8
Woman 1 selects man 4 6 2 5 8 1 3 7
2 8 5 3 1 6 7 4 2

3 6 8 1 2 3 4 7 5

4 3 2 4 7 6 8 5 1

5 6 3 1 4 5 7 2 8

6 2 1 3 8 7 4 6 5

7 3 5 7 2 4 1 8 6

8 7 2 8 4 5 6 3 1

Table 3.3 Sample Input Data for the Stable Marriage Program.

The result is represented by an array of women x, such that x[m] denotes
the partner of man m. In order to maintain symmetry—also called “equal
rights”—between men and women, an additional array y is introduced, such
that y[w] denotes the partner of woman w.

var x: array [man] of woman; (3.39)
y: array [woman) of man ’

It is plain that y is not strictly necessary since it represents information that
is already present through the existence of x. In fact, the relations

xpwll =w, ylxlm]] =m (3.40)

150 RECURSIVE ALGORITHMS CHAP. 3

hold for all m, w who are married. Thus, the value y[w] could be determined
by a simple search of x; the array y, however, clearly improves the efficiency
of the algorithm. The information represented by x and y is needed to deter-
mine stability of a proposed set of marriages. Since this set is constructed
stepwise by marrying individuals and testing stability after each proposed
marriage, x and y are needed even before all their components are defined.
In order to keep track of defined components, we may introduce Boolean
arrays

singlem : array [man] of boolean

singlew : array [woman] of boolean (3.41)

with the meaning that

—isinglem[m] implies that x[m] is defined,
—singlew[w] implies that y[w] is defined.

An inspection of the proposed algorithm, however, quickly reveals that the
marital status of a man is determined by the value m in a simple manner,
namely that

—singlemlk] = k < m (3.42)

This suggests that the array singlem be omitted; accordingly, we will simplify
the name singlew to single.

These conventions lead to the refinement shown in (3.43). The predicate
acceptable can be refined into the conjunction of single and stable, where
stable is still a function to be further elaborated.

procedure try(m: man);
var r: rank; w: woman,
begin for r := 1 to n do
begin w := wmr[m,r];
if singlelw] A stable then
begin x[m] := w; y[w] := m; single[w] := false,
if m << n then try(succ(m))
else record stable set;
single[w] := true
end
end
end

(3.43)

At this point, the strong similarity of this solution with Program 3.5 is still
noticeable.

The crucial task is now the refinement of the algorithm to determine sta-
bility. Unfortunately, it is not possible to represent stability by such a simple
expression as the safety of a queen’s position in Program 3.5. The first detail
which should be kept in mind is that stability follows by definition from
comparisons of preferences or ranks. The ranks of men or women, however,

SEC. 3.6 THE STABLE MARRIAGE PROBLEM 151

are nowhere explicitly available in our collection of data established so far.
Surely, the rank of woman w in the mind of man m can be computed, but
only by a costly search of w in wmr[ml].

Since the computation of stability is a very frequent operation, it is
advisable to make this information more directly accessible. To this end,
we introduce the two matrices

rmw : array [man, woman] of rank;
(3.44)

rwm : array [woman, man) of rank

such that rmw[m, w] denotes woman w’s rank in the preference list of man

m, and rwm[w, m] denotes the tank of man m in the list of w. It is plain that

the values of these auxiliary arrays are constant and can initially be deter-

mined from the values of wmr and mwr.

The process of determining the predicate stable now proceeds strictly
according to its original definition. Recall that we are trying the feasibility
of marrying m and w, where w = wmr[m, r], i.e., w has rank r in m’s list of
preferences. Being optimistic, we first presume that stability still prevails,
and then we set out to find possible sources of trouble. Where could they be
hidden? There are two symmetrical possibilities:

1. There might be a woman pw, preferred to w by m, who herself prefers m
to her husband.

2. There -might be a man pm, preferred to m by w, who himself prefers w
to his wife.

Pursuing trouble source 1, we compare ranks rwm[pw, m] and
rwm[pw, y[pw]] for all women preferred to w by m, i.e., for all pw = wmr[m, i]
such that i < r. We happen to know that all these candidate women are
already married because, were anyone of them still single, m would have
picked her beforehand. The described process can be formulated by a simple
linear search; s denotes stability.

s 1= true; i := 1;
while (i < r) A s do
begin pw 1= wmr[m,il; i:= i+1; (3.45)
if —single[pw] then s := rwm[pw, m] < rwm[pw, y[pw]]
end

Following trouble source 2, we must investigate all candidates pm who
are preferred by w to their current assignation m, i.e., the investigators are
all preferred men pm = mwr[w, i] such that i < rwm[w, m]. In analogy to
tracing trouble source 1, comparison between ranks rmw[pm,w] and
rmw[pm, x[pm]] will be necessary. We must be careful, however, to omit
comparisons involving x[pm] where pm is still single. The necessary safeguard
is a test pm < m, since we know that all men preceding m are already
married.

152 RECURSIVE ALGORITHMS CHAP. 3
Program 3.6 Stable Marriages.

program marriage (input,output);

{ problem of the stable marriages}

const n = §;

type man = 1..n; woman = 1..n; rank = 1..n;

var m: man; w:. woman; r: rank;
wmr: array [man, rank] of woman;
mwr: array [woman, rank] of man;
rmw: array [man, woman) of rank;
rwm: array [woman, man] of rank
x: array [man] of woman;
y: array [woman) of man;
single: array [woman] of boolean;

procedure print;
var m: man; rm, rw: integer;

begin rm := 0; rw := 0;
for m := 1 to n do
begin write (x[m]:4);
rm ;= rm + rmwimx[mll; rw := rw + rwm[x[m],m]
end ;

writeln (rm:8,rw:4);
end {print} ;

procedure try(m: man);
var r: rank; w: woman;

function stable: boolean;
var pm: man; pw:. woman;
i, lim: rank; s: boolean;

begin s := true; i := 1;
while (i<r) A s do
begin pw := wmr[m,il; i 1= i+1;
if —single[pw] then s := rwm[pw,m] < rwm[pw,y[pw]]
end ;
i:=1; lim := rwm[w,m];
while (i<lim) A s do
begin pm := mwrw,i]; i 1= i+1;
if pm < m then s := rmw[pm,w] > rmw[pm,x[pm]]|
end ;
stable := s

end {stable} ;

SEC. 3.6 THE STABLE MARRIAGE PROBLEM 153

begin {1ry}
for r := 1 to n do
begin w := wmr[m,r];
if single[w] then
if stable then

begin x[m] := w; y[w] := m; single[w] := false,
if m < n then try(succ(m)) else print;
single[w] := true
end
end
end {rry} ;
begin {main program}
for m := 1 to n do
for r := 1 to n do
begin read(wmr[m,r]); rmwlm,wmrim,r]} := r
end ;
for w:= 1 to n do
for r := 1 to n do
begin read(mwr[w,r]); rwm[w,mwr{w,r]] := r
end ;)
for w := 1 to n do single[w] := true;
try (1)

end .

Program 3.6 (Continued)

The complete algorithm is shown in Program 3.6. Table 3.3 is a set of
input data representing arrays wmr and mwr. Finally, Table 3.4 gives the nine
computed stable solutions.

This algorithm is notably based on a straightforward backtracking
scheme. Its efficiency primarily depends on the sophistication of the solution
tree pruning scheme. A somewhat faster, but more complex and less trans-
parent algorithm has been presented by McVitie and Wilson [3-1 and 3-2],
who also have extended it to the case of sets (of men and women) of unequal
size.

Algorithms of the kind of ‘the last two examples, which generate all
possible solutions to a problem (given certain constraints), are often used to
select one or several of the solutions which are optimal in some sense. In the
present example, one might, for instance, be interested in the solution which
on the average best satisfies the men—or the women—or all persons.

Notice that Table 3.4 indicates the sums of the ranks of all women in the
preference lists of their husbands, and the sums of the ranks of all men in

154 RECURSIVE ALGORITHMS CHAP. 3

X1 X2 X3 X4 X5 Xe X7 Xg rmrw c*
Solution 1 7 4 3 8 1 5 2 6 16 32 21
2 2 4 3 8 1 5 7 6 22 27 449
3 2 4 3 1 7 5 8 6 31 20 59
4 6 4 3 8 1 5 7 2 26 22 62
5 6 4 3 1 7 5 8 2 35 15 47
6 6 3 4 8 1 5 7 2 29 20 143
7 6 3 4 1 7 5 8 2 38 13 47
8 3 6 4 8 1 5 7 2 34 18 758
9 3 6 4 1 7 5 8 2 43 11 34

*c = number of evaluations of stability.
Solution 1 = male optimal solution.
Solution 9 = female optimal solution.

Table 3.4 Result of the Stable Marriage Problem.

the preference lists of their wives. These are the values

rm = zn:l rmw[m, x[m]], rw = il rwm[x[m], m) (3.46)

The solution with the least value rm is called the male-optimal stable solu-
tion; the one with the smallest rw is the female-optimal stable solution.
It lies in the nature of the chosen search strategy that good solutions from
the men’s point of view are generated first and that the good solutions from
the women’s perspective appear toward the end. In this sense, the algorithm
is biased toward the male population. This can quickly be changed by sys-
tematically interchanging the role of men and women, i.e., by merely inter-
changing mwr with wmr and interchanging rmw with rwm.

We refrain from extending this program further and leave the incorpora-
tion of a search for an optimal solution to the next and last example of a
backtracking algorithm.

3.7. THE OPTIMAL SELECTION PROBLEM

The last example of a backtracking algorithm is a logical extension of the
previous two examples represented by the general schema (3.35). First we
were using the principle of backtracking to find a single solution to a given
problem. This was exemplified by the knight’s tour and the eight queens.
Then we tackled the goal of finding a// solutions to a given problem; the
examples were those of the eight queens and the stable marriages. Now we
wish to find the optimal solution.

To this end, it is necessary to generate all possible solutions, and in the

SEC. 3.7 THE OPTIMAL SELECTION PROBLEM 155

course of generating them to retain the one which is optimal in some specific
sense. Assuming that optimality is defined in terms of some positive valued
function f(s), the algorithm is derived from schema (3.35) by replacing the
statement print solution by the statement

if f(solution) > f(optimum) then optimum := solution (3.47)

The variable optimum records the best solution so far encountered.
Naturally, it has to be properly initialized; moreover, it is customary to
record the value f(optimum) by another variable in order to avoid its fre-
quent recomputation.

An example of the general problem of finding an optimal solution to a
given problem follows: We choose the important and frequently encountered
problem of finding an optimal selection out of a given set of objects subject
to constraints. Selections that constitute acceptable solutions are gradually
built up by investigating individual objects from the base set. A procedure
try describes the process of investigating the suitability of one individual
object, and it is called recursively (to investigate the next object) until all
objects have been considered.

We note that the consideration of each object (called candidates in previ-
ous examples) has two possible outcomes, namely, either the inclusion of the
investigated object in the current selection or its exclusion. This makes the
use of a repeat or for statement inappropriate; instead, the two cases may as
well be explicitly written out. This is shown in (3.48) (assume that the objects
are numbered 1, 2, ..., n).

procedure try(i: integer);
begin
1: if inclusion is acceptable then
begin include i-th object;
if i < n then try(i+1) else check optimality;
eliminate i-th object
end;
2: if exclusion is acceptable then
if i << n then try(i+1) else check optimality

(3.48)

end

From this pattern it is evident that there are 2" possible sets; clearly,
appropriate acceptability criteria must be employed to reduce the number of
investigated candidates very drastically. In order to elucidate this process,
let us choose a concrete example for a selection problem: Let each of the n
objects ay, . . ., a, be characterized by its weight w and its value v. Let the
optimal set be the one with the largest sum of the values of its components,

156 RECURSIVE ALGORITHMS CHAP. 3

and let the constraint be a limit on the sum of their weight. This is a problem
well-known to all travellers who pack suitcases by selecting from » items in
such a way that their total value is optimal and that their total weight does
not exceed a specific allowance.

We are now in a position to decide upon the representation of the given
facts in terms of data. The choices of (3.49) are easily derived from the fore-
going developments.

type index = 1..n;
object = record w,v: integer end

var a: array [index] of object; (3.49)
limw, totv, maxv: integer;
s, opts: set of index

The variables /imw and totv denote the weight limit and the total value of all
n objects. These two values are actually constant during the entire selection
process. s represents the current selection of objects in which each object is
represented by its name (index). opts is the optimal selection so far encoun-
tered, and maxv is its value.

Which are now the criteria for acceptability of an object for the current
selection ? If we consider inclusion, then an object is selectable if it fits into
the weight allowance. If it does not fit, we may stop trying to add further
objects to the current selection. If, however, we consider exclusion, then the
criterion for acceptability, i.e., for the continuation of building up the current
selection, is that the total value which is still achievable after this exclusion
is not less than the value of the optimum so far encountered. For, if it is less,
continuation of the search, although it may produce some solutions, will not
yield the optimal solution. Hence any further search on the current path is
fruitless. From these two conditions we determine the relevant quantities to
be computed for each step in the selection process:

1. The total weight tw of the selection s so far made.
2. The still achievable value av of the current selection s.

These two entities are appropriately represented as parameters of the pro-
cedure zry.
The condition inclusion is acceptable in (3.48) can now be formulated as

tw + alilw < limw (3.50)

and the subsequent check for optimality as

SEC. 3.7 THE OPTIMAL SELECTION PROBLEM 157

if av > maxv then
begin {new optimum, record it}
opts 1= s; maxv := qv
end

(3.51)

The last assignment is based on the reasoning that the achievable value is the
achieved value, once all n objects have been dealt with.
The condition exclusion is acceptable in (3.48) is expressed by

av — alil.v > maxv (3.52)

Since it is used again thereafter, the value av — a[i].v is given the name avl
in order to circumvent its re-evaluation.

The entire program now follows from (3.48) through (3.52) with the
addition of appropriate initialization statements for the global variables.
The ease of expressing inclusion and exclusion from the set s by use of the
set operators is noteworthy. The results of execution of Program 3.7 with
weight allowances ranging from 10 to 120 are listed in Table 3.5.

Program 3.7 Optimal Selection.

program selection (input,output);
{ find optimal selection of objects under constraint}
const n = 10;
type index = 1..n;

object = record v,w: integer end;
var i: index;

a: array [index] of object;

limw, totv, maxv: integer;

wl, w2, w3: integer;

s, opts: set of index;

z: array [boolean] of char,

procedure try(i: index; tw,av: integer);
var avl: integer;
begin {try inclusion of object i}
if tw + alil] .w < limw then
begin s := s + [i];
if i < n then try(i+1, twialilw, av) else
if av > maxv then

begin maxv := av; opts 1= s
end ;
s:i=1y5 — [i]

end ;

158 RECURSIVE ALGORITHMS CHAP.

{try exclusion of object i} avl := av — al[i] v;
if avl > maxv then
begin if i << n then try(i+1, tw, avl) else

begin maxv := avl; opts := s
end
end
end {7ry} ;
begin totv := 0;
for i := 1 to n do

with a[i] do
begin read(w,v); totv := totv + v

end ;

read(wl,w2,w3);

z[true] := '*'; z[false] := " ’;

write(' WEIGHT ');

for i := 1 to n do write (a[i] .w: 4);

writeln; write (VALUE ');

for i := 1 to n do write (a[i] .v: 4);

writeln;

repeat limw := wl; maxv := 0; s:=[]; opts := [];
try(1,0,t0tv);
write(limw);
for i := 1 to n do write(’ ‘s z[i in opts]);
writeln; wl := wl 4+ w2

until wl > w3

end .
Program 3.7 (Continued)

Weight 10 11 12 13 14 15 16 17 18 19
Value 18 20 17 19 25 21 27 23 25 24

10 *
20
30 *
40
50
60
70
80
90
100
110
120

*
* X ¥ %

* K K X X X X * *
* K K X X ¥ ¥ *
* ¥ K X ¥ %X %
* K X X * *

*
* ¥ ¥ %

*

Table 3.5 Sample Output from Optimal Selection Program.

CHAP. 3 EXERCISES 159

This backtracking scheme with a limitation factor curtailing the growth of
the potential search tree, is also known as branch and bound algorithm.

3.1.

3.2,

3.3.

EXERCISES

(Towers of Hanoi). Given are three rods and » disks of different sizes. The
disks can be stacked up on the rods, thereby forming “towers.” Let the »
disks initially be placed on rod A in the order of decreasing size, as shown in
Fig. 3.10 for n = 3. The task is to move the » disks from rod 4 to rod C

[1]
3
I 7,

A B c

Fig. 3.10 Towers of Hanoi.

such that they are ordered in the original way. This has to be achieved
under the constraints that

1. In each step exactly one disk is moved from one rod to another rod.
2. A disk may never be placed on top of a smaller disk.
3. Rod B may be used as an auxiliary store.

Find an algorithm which performs this task. Note that a tower may con-
veniently be considered as consisting of the single disk at the top and the
tower consisting of the remaining disks. Describe the algorithm as a recursive
program.

Write a procedure that generates all #! permutations of » elements ay, . . .,
a, in situ, i.e., without the aid of another array. Upon generating the next
permutation, a parametric procedure Q is to be called which may, for
instance, output the generated permutation.

Hint: Consider the task of generating all permutations of the elements
a,, ..., a, as consisting of the m subtasks of generating all permutations of
ai,...,a,_ followed by a,, where in the ith subtask the two elements a;
and a,, had initially been interchanged.

Deduce the recursion scheme of Fig. 3.11 which is a superposition of the
four curves W,, W,, W5, W,. The structure is similar to that of the Sier-
pinski curves (3.21) and (3.22). From the recursion pattern, derive a recursive
program that plots these curves.

160

34.

3.5.

3.6.

RECURSIVE ALGORITHMS CHAP. 3

L]

L

hnl
T

L;"j{
3

;

m

: .j}b
A

I

5 oy

In ':uf

1] I’
5 i

i
T
3
b
SIS

T

5
o
o
i

i i

Fig. 3.11 W-curves of order 1 through 4.

Only 12 of the 92 solutions computed by the Eight Queens Program 3.5
are essentially different. The other ones can be derived by reflections about
axes or the center point. Devise a program that determines the 12 principal
solutions. Note that, for example, the search in column 1 may be restricted
to positions 1-4.

Change the Stable Marriage Program so that it determines the optimal solu-
tion (male or female). It therefore becomes a “branch and bound” program
of the type represented by Program 3.7.

A certain railway company serves x stations Sy, . . ., S,. Itintends to improve
its customer information service by computerized information terminals.
A customer types in his departure station S, and his destination Sp, and he
is supposed to be (immediately) given the schedule of the train connections
with minimum total time of the journey.

Devise a program to compute the desired information. Assume that
the timetable (which is your data bank) is provided in a suitable data struc-
ture containing departure (= arrival) times of all available trains. Naturally,
not all stations are connected by direct lines (see also Exercise 1.8).

CHAP. 3 REFERENCES 161

3.7. The Ackermann Function A is defined for all non-negative integer arguments

m and n as follows:
AO,n) =n+41
A(m,0) = A(m — 1, 1) (m=> 0)
Am,n) = A(m — 1, A(m, n — 1)) (m,n>0)

Design a program that computes A(m, n) without the use of recursion.

As a guideline, use Program 2.11, the non-recursive version of Quicksort.
Devise a set of rules for the transformation of recursive into iterative pro-
grams in general.

REFERENCES

McVirig, D. G. and WiLsoN, L. B., “The Stable Marriage Problem,” Comm.
ACM, 14, No. 7 (1971), 486-92.

, “Stable Marriage Assignment for Unequal Sets,” BIT,
10, (1970), 295-309.

“Space Filling Curves, or How to Waste Time on a Plotter,” Software-Prac-
tice and Experience, 1, No. 4 (1971), 403-40.

WIirTH, N., “Program Development by Stepwise Refinement,” Comm. ACM,
14, No. 4 (1971), 221-27.

4 DYNAMIC INFORMATION
STRUCTURES

41. RECURSIVE DATA TYPES

In Chap. 2 the array, record, and set structures were introduced as
fundamental data structures. They are called fundamental because they
constitute the building blocks out of which more complex structures are
formed and because in practice they do occur most frequently. The purpose
of defining a data type, and of thereafter specifying that certain variables be
of that type, is that the range of values assumed by these variables, and there-
by their storage pattern, is fixed once and for all. Hence, variables declared
in this way are said to be static. However, there are many problems which
involve far more complicated information structures. The characteristic of
these problems is that their structures change during the computation. They
are therefore called dynamic structures. Naturally, the components of such
structures are—at some level of detail—static, i.e., of one of the fundamental
data types. This chapter is devoted to the construction, analysis, and manage-
ment of dynamic information structures.

It is noteworthy that there exist some close analogies between the methods
used for structuring algorithms and those for structuring data. As with all
analogies, there remain some differences (otherwise they would be identities),
but a comparison of structuring methods for programs and data is never-
theless illuminating.

The elementary, unstructured statement is the assignment. Its correspond-
ing member in the family of data structures is the scalar, unstructured type.
These two are the atomic building blocks for composite statements and data
types. The simplest structures, obtained through enumeration or sequencing,

162

SEC. 4.1 RECURSIVE DATA TYPES 163

are the compound statement and the record structure. They both consist of
a finite (usually small) number of explicitly enumerated components, which
may themselves all be different from each other. If all components are iden-
tical, they need not be written out individually: we use the for statement and
the array structure to indicate replication by a known, finite factor. A choice
among two or more variants is expressed by the conditional or the case state-
ment and by the variant record structure, respectively. And finally, a repeti-
tion by an initially unknown (and potentially infinite) factor is expressed by
the while or repeat statements. The corresponding data structure is the sequ-
ence (file), the simplest kind which allows the construction of types of infinite
cardinality.

The question arises whether or not there exists a data structure that
corresponds in a similar way to the procedure statement. Naturally, the most
interesting and novel property of procedures in this respect is recursion.
Values of such a recursive data type would contain one or more components
belonging to the same type as itself, in analogy to a procedure containing
one or more calls to itself. Like procedures, such data type definitions might
be directly or indirectly recursive.

A simple example of an object that would most appropriately be repre-
sented as a recursively defined type is the arithmetic expression found in
programming languages. Recursion is used to reflect the possibility of nesting,
i.e., of using parenthesized subexpressions as operands in expressions. Hence,
let an expression here be defined informally as follows:

An expression consists of a term, followed by an operator, followed by a
term. (The two terms constitute the operands of the operator.) A term is
either a variable—represented by an identifier—or an expression enclosed in
parentheses.

A data type whose values represent such expressions can easily be
described by using the tools already available with the addition of recursion:

type expression = record op: operator;
opdl, opd2: term
end;
type term = record 4.1)
if ¢ then (id: alfa)
else (subex: expression)
end

Hence, every variable of type term consists of two components, namely,
the tagfield ¢ and, if ¢ is true, the field id, or of the field subex otherwise.

164 DYNAMIC INFORMATION STRUCTURES CHAP. 4

Consider now, for example, the following four expressions:

l.x+y
2.x—(y*2)
.x+pxiz—w
4. (x/(y +2)xw

These expressions may be visualized by the patterns in Fig. 4.1, which
exhibit their nested, recursive structure, and they determine the layout or
mapping of these expressions onto a store.

4.2)

1. + 2. -
T X T X
y *
F Y
z
3 * 4, *
+ /
F X T X
Y F +
- F Y
F}T z T z
w T w

Fig. 4.1 Storage pattern for recursive record structures.

A second example of a recursive information structure is the family
pedigree: Let a pedigree be defined by (the name of) a person and the two
pedigrees of his parents. This definition leads inevitably to an infinite
structure. Real pedigrees are bounded because at some level of ancestry
information is missing. This can be taken into account by again using a
variant structure as shown in (4.3).

type ped = record
if known then
(name: alfa; 4.3)
father, mother: ped)
end

SEC. 4.1 RECURSIVE DATA TYPES 165

(Note that every variable of type ped has at least one component, namely,
the tagfield called known. If its value is true, then there are three more
fields; otherwise, there are none.) The particular value denoted by the
(recursive) record constructor

x = (T,Ted (T ,Fred(T,Adam,(F),(F)),(F)),
(T, Mary,(F)(T,Eva,(F),(F)))
is depicted in Fig. 4.2 in a way that may suggest a possible storage pattern.

(Since only a single record type is involved, we have omitted the type identifier
ped preceding each constructor).

T Ted

T Fred

T Adam

T Mary

I

-

Eva

II

Fig. 4.2 Pedigree structure.

The important role of the variant facility becomes clear; it is the only
means by which a recursive data structure can be bounded, and it is therefore
an inevitable companion of every recursive definition. The analogy between
program and data structuring concepts is particularly pronounced in this
case. A conditional statement must necessarily be part of every recursive
procedure in order that execution of the procedure can terminate. Termina-
tion of execution evidently corresponds to finite cardinality.

166 DYNAMIC INFORMATION STRUCTURES CHAP. 4

4.2. POINTERS OR REFERENCES

The characteristic property of recursive structures which clearly distin-
guishes them from the fundamental structures (arrays, records, sets) is their
ability to vary in size. Hence, it is impossible to assign a fixed amount of
storage to a_ recursively defined structure, and as a consequence a compiler
cannot associate specific addresses to the components of such variables.
The technique most commonly used to master this problem involves a dynamic
allocation of storage, i.e., allocation of store to individual components at the
time when they come into existence during program execution, instead of
at translation time. The compiler then allocates a fixed amount of storage
to hold the address of the dynamically allocated component instead of the
component itself. For instance, the pedigree illustrated in Fig. 4.2 would be
represented by individual—quite possibly non-contiguous—records, one for
each person. These persons are then linked by their addresses assigned to the
respective “father” and “mother” fields. Graphically, this situation is best
expressed by the use of arrows or pointers (see Fig. 4.3).

[rlrea]y el

— N\

[Trealp [yl [rfvemiply]

— ; H//
[1Jagsm] [4] HEINN

o

Fig. 4.3 Structure linked by pointers.

It must be emphasized that the use of pointers to implement recursive
structures is merely a technique. The programmer need not be aware of
their existence. Storage may be allocated automatically the first time a new
component is referenced. However, if the technique of using references or
pointers is made explicit, more general data structures can be constructed
than those definable by purely recursive data definition. In particular, it is
then possible to define “infinite” or circular structures and to dictate that
certain structures are shared. It has therefore become common in advanced
programming languages to make possible the explicit manipulation of refer-
ences to data in addition to the data themselves. This implies that a clear
notational distinction must exist between data and references to data and that

SEC. 4.2 POINTERS OR REFERENCES 167

consequently data types must be introduced whose values are pointers
(references) to other data. The notation we use for this purpose is the fol-
lowing;

type T, = 1T (4.9

The type declaration (4.4) expresses that values of type 7', are pointers to data
of type T. Thus, the arrow in (4.4) is verbalized as “pointer to.” It is funda-
mentally important that the type of elements pointed to is evident from the
declaration of T,. We say that T, is bound to T. This binding distinguishes
pointers in higher-level languages from addresses in assembly codes, and it
is a most important facility to increase security in programming through
redundancy of the underlying notation.

Values of pointer types are generated whenever a data item is dynamically
allocated. We will adhere to the convention that such an occasion be explicitly
mentioned at all times. This is in contrast to the situation in which the first
time that an jtem is mentioned it is automatically (assumed to be) allocated.
For this purpose, we introduce the intrinsic procedure new. Given a pointer
variable p of type T, the statement

new(p) 4.5)

effectively allocates a variable of type 7, generates a pointer of type T,
referencing this new variable, and assigns this pointer to the variable p
(see Fig. 4.4). The pointer value itself can now be referred to as p (i.e., as the
value of the pointer variable p). In contrast, the variable which is referenced
by p is denoted by p1. This is the dynamically allocated variable of type T.

pi 1T y—»;\
Fig. 4.4 Dynamic allocation of variable

pt: T ph.

It was mentioned above that a variant component is essential in every
recursive type to ensure finite cardinality. The example of the family predigree
is of a pattern that exhibits a most frequently occurring constellation [see
(4.3)], namely, the case in which the tagfield is two-valued (Boolean) and in
which its value being false implies the absence of any further components.
This is expressed by the declaration schema (4.6).

type T = record if p then S(T) end 4.6)

S(T) denotes a sequence of field definitions which includes one or more fields
of type T, thereby ensuring recursivity. All structures of a type patterned
after (4.6) will exhibit a tree (or list) structure similar to that shown in Fig.
4.3. Its peculiar property is that it contains pointers to data components with
a tagfield only, i.e., without further relevant information. The implementa-
tion technique using pointers suggests an easy way of saving storage space by

168 DYNAMIC INFORMATION STRUCTURES CHAP. 4

letting the tagfield information be included in the value of the pointer itself.
The common solution is to extend the range of values of a type T, by a single
value that is pointing to no element at all. We denote this value by the special
symbol nil, and we understand that nil is automatically an element of all
pointer types declared. This extension of the range of pointer values explains
why finite structures may be generated without the explicit presence of variants
(conditions) in their (recursive) declaration.

The new formulations of the data types declared in (4.1) and (4.3)—
based on explicit pointers—are given in (4.7) and (4.8), respectively. Note
that in the latter case (which originally corresponded to the schema (4.6))
the variant record component has vanished, since pt.known = false is now
expressed as p = nil. The renaming of the type ped to person reflects the
difference in the viewpoint brought about by the introduction of explicit
pointer values. Instead of first considering the given structure in its entirety
and then investigating its substructure and its components, attention is
focused on the components in the first place, and their interrelationship
(represented by pointers) is not evident from any fixed declaration,

type expression = record op: operator;
opdl, opd2: Tterm
end;
type term = record 4.7
if ¢ then (id: alfa)
else (sub: texpression)
end

type person = record name: alfa,
father, mother: 1 person (4.8)
end

The data structure representing the pedigree shown in Figs. 4.2 and 4.3
is again shown in Fig. 4.5 in which pointers to unknown persons are denoted
by nil. The ensuing improvement in storage economy is obvious.

(e p

Fred nil Mary | nil

‘Adam nil | nil \iln_"ln_lll Fig. 4.5 Structure with nil pointers.

SEC. 4.2 POINTERS OR REFERENCES 169

Again referring to Fig. 4.5, assume that Fred and Mary are siblings, i.e.,
have the same father and mother. This situation is easily expressed by
replacing the two nil values in the respective fields of the two records. An
implementation that hides the concept of pointers or uses a different tech-
nique of storage handling would force the programmer to represent the
records of Adam and Eva twice each. Although in accessing their data for
inspection it does not matter whether the two fathers (and the two mothers)
are duplicated or represented by a single record, the difference is essential
when selective updating is permitted. Treating pointers as explicit data items
instead of as hidden implementation aids allows the programmer to express
clearly where storage sharing is intended.

A further consequence of the explicitness of pointers is that it is possible
to define and manipulate cyclic data structures. This additional flexibility
yields, of course, not only increased power but also requires increased care
by the programmer because the manipulation of cyclic data structures may
easily lead to non-terminating processes.

This phenomenon of power and flexibility being intimately coupled with
the danger of misuse is well-known in programming, and it particularly
recalls the goto statement. Indeed, if the analogy between program structures
and data structures is to be extended, the purely recursive data structure could
well be placed at the level corresponding with the procedure, whereas the
introduction of pointers is comparable to the use of goto statements. For,
as the goto statement allows the construction of any kind of program pattern
(including loops), so do pointers allow for the composition of any kind of
data structure (including cycles). The parallel development of corresponding
program and data structures is shown in concise form in Table 4.1.

In Chap. 3 it was shown that iteration is a special case of recursion and

Construction Pattern Program Statement Data Type
Atomic element Assignment Scalar type
Enumeration Compound statement Record type
Repetition by a known For statement Array type

factor
Choice Conditional statement Variant record, type
union
Repetition by an unknown While or repeat statement Sequence or file type
factor
Recursion Procedure statement Recursive data type
General “graph” Go to statement Structure linked by
pointers

Table 4.1 Correspondences of Program and Data Structures.

170 DYNAMIC INFORMATION STRUCTURES CHAP. 4

that a call of a recursive procedure P defined according to schema (4.9)

procedure P;
begin

if B then begin P,; P end
end

4.9

where P, is a statement not involving P, is equivalent to and replaceable by
the iterative statement

while B do P,

The analogies outlined in Table 4.1 reveal that a similar relationship
holds between recursive data types and the sequence. In fact, a recursive
type defined according to the schema

type 7 = record
if B then (t,: Ty; t: T) (4.10)
end

where T, is a type not involving T, is equivalent and replaceable by the
sequential data type
file of T,

This shows that recursion can be replaced by iteration in program and data
definitions if (and only if) the procedure or type name occurs recursively
only once at the end (or the beginning) of its definition.

The remainder of this chapter is devoted to the generation and manipula-
tion of data structures whose components are linked by explicit pointers.
Structures with specific simple patterns are emphasized in particular; recipes
for handling more complex structures may be derived from those for mani-
pulating basic formations. These are the linear list or chained sequence—
the most simple case—and trees. Our preoccupation with these “building
blocks” of data structuring does not imply that more involved structures do
not occur in practice. In fact, the following story which appeared in a Ziirich
newspaper in July 1922 is a proof that irregularity may even occur in cases
which usually serve as examples for regular structures, such as (family)
trees. The story tells of a man who describes the misery of his life in the fol-
lowing words:

I married a widow who had a grown-up daughter. My father, who visited
us quite often, fell in love with my step-daughter and married her. Hence,
my father became my son-in-law, and my step-daughter became my mother.
Some months later, my wife gave birth to a son, who became the brother-in-
law of my father as well as my uncle. The wife of my father, that is my step-
daughter, also had a son. Thereby, I got a brother and at the same time a
grandson. My wife is my grandmother, since she is my mother’s mother.
Hence, I am my wife’s husband and at the same time her step-grandson; in
other words, I am my own grandfather.

SEC. 4.3 LINEAR LISTS 171

4.3. LINEAR LISTS
4.3.1. Basic Operations

The simplest way to interrelate or link a set of elements is to line them up
in a single /ist or queue. For, in this case, only a single link is needed for each
element to refer to its successor.

Assume that a type T is defined as shown in (4.11). Every variable of
this type consists of three components, namely, an identifying key, the
pointer to its successor, and possibly further associated information omitted
in (4.11).

type T = record key: integer;
next: 1T;

(4.11)
end

A list of T’s, with a pointer to its first component being assigned to a variable
D, is illustrated in Fig. 4.6. Probably the simplest operation to be performed
with a list as shown in Fig. 4.6 is the insertion of an element at its head. First,
an element of type T is allocated, its reference (pointer) being assigned to an
auxiliary pointer variable, say g. Thereafter, a simple reassignment of pointers
completes the operation, which is programmed in (4.12).

new(q); qt.next := p; p:=gq 4.12)
Note that the order of these three statements is essential.
plL_o—— 1
o i -
. > 4

Fig. 4.6 Example of a list.

The operation of inserting an element at the head of a list immediately
suggests how such a list can be generated: starting with the empty list, a
heading element is added repeatedly. The process of list generation is expressed
in (4.13); here the number of elements to be linked is n.

p = nil; {start with empty list}

while n > 0 do
begin new(q); qt.next :
qt.key := n; n .=

P, D= q; (4.13)
n—1

end

172 DYNAMIC INFORMATION STRUCTURES CHAP. 4

This is the simplest way of forming a list. However, the resulting order of
elements is the inverse of the order of their “arrival.” In some applications
this is undesirable; consequently, new elements must be appended at the
end of the list. Although the end can easily be determined by a scan of the
list, this naive approach involves an effort that may as well be saved by using
a second pointer, say ¢, always designating the last element. This method is,
for example, applied in Program 4.4 which generates cross-references to a
given text. Its disadvantage is that the first element inserted has to be treated
differently from all later ones.

The explicit availability of pointers makes certain operations very simple
which are otherwise cumbersome; among the elementary list operations are
those of inserting and deleting elements (selective updating of a list), and, of
course, the traversal of a list. We first investigate list insertion.

Assume that an element designated by a pointer (variable) g is to be
inserted in a list after the element designated by the pointer p. The necessary
pointer assignments are expressed in (4.14), and their effect is visualized
by Fig. 4.7.

ql.next := pl.next; pl.next := q 4.19)

q —

= =F

Fig. 4.7 List insertion after p?.

If insertion before instead of after the designated element p?1 is desired,
the one-directional link chain seems to cause a problem because it does not
provide any kind of path to an element’s predecessors. However, a simple
“trick” solves our dilemma: it is expressed in (4.15) and illustrated in Fig.
4.8. Assume that the key of the new element is k = 8.

new(q); q1 := pT;

plkey := k; pl.next := q (4.15)
The “trick” evidently consists of actually inserting a new component after
pl, but then interchanging the values of the new element and of pt.

Next, we consider the process of list deletion. Deleting the successor of a
p? is straightforward. In (4.16) it is shown in combination with the re-inser-
tion of the deleted element at the head of another list (designated by g). r
is an auxiliary variable of type 17.

r := pt.next; pt.next := rl.next;

ri.next :=gq; q:=r (4.16)

SEC. 4.3 LINEAR LISTS 173

q— 8 27
-~
T
— 13 27 /ﬁ 21 —_ 13 /> 8 21 /»
P] - -]

Fig. 4.8 List insertion before p?.

o a a[o]
y AN o] // —1
/ h / \\
/ \ ’/ \
i
p— { | p—> ‘\ lI
\ ! /' f A / J
7

Fig. 4.9 List deletion and re-insertion.

Figure 4.9 illustrates process (4.16) and shows that it consists of a cyclic
exchange of three pointers.

More difficult is the removal of a designated element itself (instead of
its successor), since we encounter the same problem as with insertion in front
of a p?: backtracking to the denoted element’s predecessor is impossible.
But deleting the successor after moving its value forward is a relatively obvi-
ous and simple solution. It can be applied whenever pt has a successor, i.e.,
is not the last element on the list.

We now turn to the fundamental operation of list traversal. Let us assume
that an operation P(x) has to be performed for every element of the list whose
first element is p1. This task is expressible as follows:

while list designated by p is not empty do
begin perform operation P;

proceed to the successor
end

In detail, this operation is described by statement (4.17).

while p = nil do
begin P(p?1); p := pt.next 4.17)
end

It follows from the definitions of the while statement and of the linking struc-
ture that P is applied to all elements of the list and to no other ones.

174 DYNAMIC INFORMATION STRUCTURES CHAP. 4

A very frequent operation performed is list searching for an element
with a given key x. As with file structures, the search is purely sequential.
The search terminates either if an element is found or if the end of the list is
reached. Again, we assume that the head of the list is designated by a pointer
p- A first attempt to formulate this simple search results in the following:

while (p = nil) A (pl.key = Xx) do p := pt.next (4.18)

However, it must be noticed that P = nil implies that p? does not exist.
Hence, evaluation of the termination condition may imply access to a non-
existing variable (in contrast to a variable with undefined value) and may
cause failure of program execution. This can be remedied either by using an
explicit break of the repetition expressed by a goto statement (4.19) or by
introducing an auxiliary Boolean variable to record whether or not a desired
key was found (4.20).

while p = nil do
if pt.key = x then goto Found 4.19)
else p := pl.next

The use of the goto statement requires the presence of a destination
label at some place; note that its incompatibility with the while statement
is evidenced by the fact that the while clause becomes misleading: the con-
trolled statement is not necessarily executed as long as p nil.

b 1= true;
while (p = nil) A b do
if pt.key = x then b := false (4.20)

else p := pt.next
{(p=nil) v —b}

4.3.2. Ordered Lists and Re-organizing Lists

Algorithm (4.20) strongly recalls the search routines for scanning an
array or a file. In fact, a file is nothing but a linear list in which the technique
of linkage to the successor is left unspecified or implicit. Since the primitive
file operators do not allow insertion of new elements (except at the end)
or deletion (except removal of all elements), the choice of representation is
left wide open to the implementor, and he may well use sequential allocation,
leaving successive components in contiguous storage areas. Linear lists with
explicit pointers provide more flexibility, and therefore they should be used
whenever this additional flexibility is needed.

To exemplify, we will now consider a problem that will re-occur through-
out this chapter in order to illustrate alternative solutions and techniques.
It is the problem of reading a text, collecting all its words, and counting the
frequency of their occurrence. It is called the construction of a concordance.

SEC. 4.3 LINEAR LISTS 175

An obvious solution is to construct a list of words found in the text.
The list is scanned for each word. If the word is found, its frequency count is
incremented ; otherwise the word is added to the list. We shall simply call
this process search, although it may apparently also include an insertion.

In order to be able to concentrate our attention on the essential part of
list handling, we assume that the words have already been extracted from the
text under investigation, have been encoded as integers, and are available in
the form of an input file.

The formulation of the procedure called search follows in a straight-
forward manner from (4.20). The variable root refers to the head of the list
in which new words are inserted according to (4.12). The complete algorithm
is listed as Program 4.1; it includes a routine for tabulating the constructed
concordance list. The tabulation process is an example in which an action
is executed once for each element of the list, as shown in schematic form in
4.17).

The linear scan algorithm of Program 4.1 recalls the search procedure
for arrays and files, and in particular the simple technique used to simplify
the loop termination condition: the use of a sentinel. A sentinel may as well

Program 4.1 Straight List Insertion.

program [ist (input,output);
{straight list insertion}
type ref = Tword,
word = record key: integer;
count: integer;
next: ref
end ;
var k: integer; root: ref;,

procedure search (x: integer; var root: ref);
var w: ref; b: boolean;

begin w := root; b := true;
while (w==nil) A b do
if wi.key = x then b := false else w := wt.next;
if b then
begin {new entry} w := root; new (root);
with rootT do
begin key := x; count := 1; next := w
end
end else
wl.count := wt.count + 1

end {search} ;

176 DYNAMIC INFORMATION STRUCTURES CHAP. 4

procedure printlist (w: ref);
begin while w = nil do
begin writeln (w1.key, wi.count);
w = wl.next
end
end {printlist} ;
begin root := nil; read(k);
while £ = 0 do
begin search (k, root); read(k)
end ;
printlist(root)
end .

Program 4.1 (Continued)

be used in list search; it is represented by a dummy element at the end of the
list. The new procedure is (4.21), which replaces the search procedure of
Program 4.1, provided that a global variable sentinel is added and that the
initialization of root is replaced by the statements

new(sentinel); root := sentinel,;

which generate the element to be used as sentinel.

procedure search(x: integer; var root: ref);

var w: ref;,
begin w := root; sentinell.key := x;
while wl.key %= x do w := wl.next;
if w = sentinel then wl.count := wft.count 4 1 else
begin {new entry} w := root; new(root); 4.21)
with root] do
begin key := x; count := 1; next := w
end
end

end {search}

Obviously, the power and flexibility of the linked list are ill used in this
example, and the linear scan of the entire list can only be accepted in cases
in which the number of elements is limited. An easy improvement, however,
is readily at hand : the ordered list search. If the list is ordered (say by increas-
ing keys), then the search may be terminated at the latest upon encountering
the first key which is larger than the new one. Ordering of the list is achieved
by inserting new elements at the appropriate place instead of at the head.
In effect, ordering is practically obtained free of charge. This is because of
the ease by which insertion in a linked list is achieved, i.e., by making full use
of its flexibility. It is a possibility not provided by the array and file structures.

SEC. 4.3 LINEAR LISTS 177

(Note, however, that even in ordered lists no equivalent to the binary search
of arrays is available.)

Ordered list search is a typical example of the situation described in
(4.15) in which an element must be inserted ahead of a given item, namely,
in front of the first one whose key is too large. The technique shown here,
however, differs from the one used in (4.15). Instead of copying values, two
pointers are carried along in the list traversal; w2 lags one step behind wl,
and it thus identifies the proper insertion place when wl has found too large
a key. The general insertion step is shown in Fig. 4.10. Before proceeding we

7 |+=—w3
! l
\ N
—t < \\ ,/
R 5 \ 7
*~—— .- 12
1 -~
w2 T nil
wi

Fig. 4.10 Ordered list insertion.
must consider two circumstances:

1. The pointer to the new element (w3) is to be assigned to w2l.next,
except when the list is still empty. For reasons of simplicity and effec-
tiveness, we prefer not to make this distinction by using a conditional
statement. The only way to avoid this is to introduce a dummy element
at the list head.

2. The scan with two pointers descending down the list one step apart
requires that the list contain at least one element (in addition to the
dummy). This implies that insertion of the first element be treated differ-
ently from the rest.

A proposal that follows these guidelines and hints is expressed in (4.23).
It uses an auxiliary procedure insert, to be declared local to search. It generates
and initializes the new element w and is shown in (4.22).

procedure insert(w: ref);
var w3: ref;
begin new(w3);
with w31 do
begin key := x; count := 1; next := w
end ;
w2t.next := w3
end {insert}

4.22)

178 DYNAMIC INFORMATION STRUCTURES CHAP. 4

The initializing statement “root :=mil” in Program 4.1 is accordingly
replaced by

new(root); roott.next := nil

Referring to Fig. 4.10, we determine the condition under which the scan
continues to proceed to the next element; it consists of two factors, namely,

(wlt.key < x) A (wll.next = nil)

The resulting search procedure is shown in (4.23).

procedure search(x: integer; var root: ref);
var wl,w2: ref;

begin w2 := root; wl := w2%.next;
if wl = nil then insert (nil) else
begin
while (Wlt.key < x) A (Wlt.next = nil) do (4.23)
begin w2 := wl; wl := w2%.next ’
end ;
if wil.key = x then wl?.count := wlt.count 4+ 1 else
insert(wl)
end

end {search} ;

Unfortunately, this proposal contains a logical flaw. In spite of our care,
a “bug” has crept in! The reader is urged to try to identify the oversight
before proceeding. For those who choose to skip this detective’s assignment,
it may suffice to say that (4.23) will always push the element first inserted to
the tail of the list. The flaw is corrected by taking into account that if the
scan terminates because of the second factor, the new element must be inserted
after w17 instead of before it. Hence, the statement “insert(wl)” is replaced by

begin if wl{.next = nil then
begin w2 := wl; wl := nil
end; (4.24)
insert(wl)
end

Maliciously, the trustful reader has been fooled once more, for (4.24) is still
incorrect. To recognize the mistake, assume that the new key lies between the
last and the second last keys. This will result in both factors of the continua-
tion condition being false when the scan reaches the end of the list, and con-
sequently the insertion being made behind the tail element. If the same key
occurs again later on, it will be inserted correctly and thus appear twice in

SEC. 4.3 LINEAR LISTS 179

the tabulation. The remedy lies in replacing the condition
wl?t.next = nil
in (4.24) by
wlt.key < x
In order to speed up the search, the continuation condition of the while
statement can once again be simplified by using a sentinel. This requires the

initial presence of a dummy header as well as a sentinel at the tail. Hence,
the list must be initialized by the following statements

new(root); new(sentinel); root!.next := sentinel;
and the search procedure becomes noticeably simpler as evidenced by
4.25).

procedure search(x: integer; var root: ref);
var wl,w2,w3: ref;

begin w2 := root; wl := w2%.next; sentinelt.key := x;
while wlt.key < x do
begin w2 := wl; wl := w2l.next
end ;
if Wll.key = x) A (wl % sentinel) then
wll.count := wlt.count 4 1 else (4.25)
begin new(w3); {insert w3 between wl and w2}
with w371 do
begin key := x; count := 1; next := wl
end ;
w2l.next := w3
end

end {search}

It is now high time to ask what gain can be expected from ordered list
search. Remembering that the additional complexity incurred is small, one
should not expect an overwhelming improvement.

Assume that all words in the text occur with equal frequency. In this
case the gain through lexicographical ordering is indeed also nil, once all
words are listed, for the position of a word does not matter if only the total
of all access steps is significant and if all words have the same frequency of
occurrence. However, a gain is obtained whenever a new word is to be
inserted. Instead of first scanning the entire list, on the average only half the
list is to be scanned. Hence, ordered list insertion pays off only if a concor-
dance is to be generated with many distinct words compared to their frequency
of occurrence. The preceding examples are therefore suitable primarily as
programming exercises rather than for practical applications.

180 DYNAMIC INFORMATION STRUCTURES CHAP. 4

The arrangement of data in a linked list is recommended when the number
of elements is relatively small (say < 100), varies, and, moreover, when no
information is given about their frequencies of access. A typical example is
the symbol table in compilers of programming languages. Each declaration
causes the addition of a new symbol, and upon exit from its scope of validity,
it is deleted from the list. The use of simple linked lists is appropriate for
applications with relatively short programs. Even in this case a considerable
improvement in access method can be achieved by a very simple technique
which is mentioned here again primarily because it constitutes a pretty
example for demonstrating the flexibilities of the linked list structure.

A characteristic property of programs is that occurrences of the same
identifier are very often clustered, that is, one occurrence is often followed by
one or more re-occurrences of the same word. This information is an invita-
tion to re-organize the list after each access by moving the word that was
found to the top of the list, thereby minimizing the length of the search path
the next time it is sought. This method of access is called list search with
re-ordering, or—somewhat pompously—self-organizing list search. In pre-
senting the corresponding algorithm in the form of a procedure which may
be substituted in Program 4.1, we take advantage of our experience made
so far and introduce a sentinel right from the start. In fact, a sentinel not only
speeds up the search, but in this case it also simplifies the program. The list
is, however, not initially empty, but contains the sentinel element already.
The initial statements are

new (sentinel); root := sentinel,

Note that the main difference between the new algorithm and the straight
list search (4.21) is the action of re-ordering when an element has been found.
It is then detached or deleted from its old position and re-inserted at the top.
This deletion again requires the use of two chasing pointers, such that the
predecessor w21 of an identified element wl7 is still locatable. This, in turn,
calls for the special treatment of the first element (i.e., the empty list). To
conceive the re-linking process, we refer to Fig. 4.11. It shows the two pointers

I 0——&—» X1

root 3
—t > > u2 sentinel

2 A0
o—f 7

w2 -
nil

wil

Fig. 4.11 List before re-ordering.

SEC. 4.3 LINEAR LISTS 181

o 1 ... U2 sentinel

2] ’*80 .‘_\ %
| —Jl —aJ =

Fig. 4.12 List after re-ordering.

(9]
(3]

[}

when w1t was identified as the desired element. The configuration after
correct re-ordering is represented in Fig. 4.12, and the complete new search
procedure is shown in (4.26).

procedure search(x: integer; var root: ref’);
var wl,w2: ref;,
begin wl := root; sentinel}.key := x;
if wl = sentinel then
begin { first element} new(root);
with root1 do
begin key := x; count := 1; next := sentinel
end
end else
if wit.key = x them wll.count := wlt.count 4 1 else
begin {search}
repeat w2 := wl; wl := w2l.next
until wll.key = x;
if wl = sentinel then
begin {insert}
w2 := root; new(root);
with root7 do
begin key := x; count := 1; next := w2
end
end else
begin { found, now reorder}
wll.count := wll.count + 1;
w2l.next := wll.next; wll.next := root; root := wl
end
end
end {search}

(4.26)

182 DYNAMIC INFORMATION STRUCTURES CHAP. 4

The improvement in this search method strongly depends on the degree
of clustering in the input data. For a given factor of clustering, the improve-
ment will be more pronounced for large lists. To provide an idea of what
order of magnitude an improvement can be expected, an empirical measure-
ment was made by applying the above concordance program to a short text
and to a relatively long text and then comparing the methods of linear list
ordering (4.21) and of list reorganization (4.26). The measured data are
condensed into Table 4.2. Unfortunately, the improvement is greatest when
a different data organization is needed anyway. We will return to this example
in Sect. 4.4.

Test 1 Test 2
Number of distinct keys 53 582
Number of occurrences of keys 315 14341
Time for search with ordering 6207 3200622
Time for search with re-ordering 4529 681584
Improvement factor 1.37 4.70

Table 4.2 Comparison of List Search Methods.
4.3.3. An Application: Topological Sorting

An appropriate example of the use of a flexible, dynamic data structure
is the process of topological sorting. This is a sorting process of items over
which a partial ordering is defined, i.e., where an ordering is given over some
pairs of items but not among all of them. This is a common situation.
Following are examples of partial orderings:

1. In a dictionary or glossary, words are defined in terms of other words.
If a word v is defined in terms of a word w, we denote this by v < w.
Topological sorting of the words in a dictionary means arranging them
in an order such that there will be no forward references.

2. A task (e.g., an engineering project) is broken up into subtasks. Comple-
tion of certain subtasks must usually precede the execution of other
subtasks. If a subtask v must precede a subtask w, we write v <w.
Topological sorting means their arrangement in an order such that upon
initiation of each subtask all its prerequisite subtasks have been com-
pleted.

3. In a university curriculum, certain courses must be taken before others
since they rely on the material presented in their prerequisites. If a course
v is a prerequisite for course w, we write » < w. Topological sorting
means arranging the courses in such an order that no course lists a
later course as prerequisite.

SEC. 4.3 LINEAR LISTS 183

4. In a program, some procedures may contain calls of other procedures.
If a procedure v is called by a procedure w, we write v < w. Topological
sorting implies the arrangement of procedure declarations in such a
way that there are no forward references.

In general, a partial ordering of a set S is a relation between the elements
of S. It is denoted by the symbol <, verbalized by “precedes,” and satisfies
the following three properties (axioms) for any distinct elements x, y, and
z of S:

(1) if x < y and y < z, then x < z (transitivity)
(2) if x < y, then not y < x (asymmetry) 4.27)
(3) not x < x (irreflexivity)

For evident reasons, we will assume that the sets S to be topologically
sorted by an algorithm are finite. Hence, a partial ordering can be illustrated
by drawing a diagram or graph in which the vertices denote the elements of
S and the directed edges represent ordering relationships. An example is
shown in Fig. 4.13.

@<@/ Fig. 4.13 Partially ordered set.

The problem of topological sorting is to embed the partial order in a
linear order. Graphically, this implies the arrangement of the vertices of the
graph in a row, such that all arrows point to the right, as shown in Fig.
4.14. Properties (1) and (2) of partial orderings ensure that the graph contains
no loops. This is exactly the prerequisite condition under which such an*
embedding in a linear order is possible.

[

—
0990
-

Fig. 4.14 Linear arrangement of partially ordered set of Fig. 4.13.

184 DYNAMIC INFORMATION STRUCTURES CHAP. 4

How do we proceed to find one of the possible linear orderings? The
recipe is quite simple. We start by choosing any item that is not preceded by
another item (there must be at least one; otherwise there would have to exist
a loop). This object is placed at the head of the resulting list and removed
from the set S. The remaining set is still partially ordered, and so the same
algorithm can be applied again until the set is empty.

In order to describe this algorithm more rigorously, we must settle on
a data structure and representation of S and its ordering. The choice of this
representation is determined by the operations to be performed, particularly
the operation of selecting elements with zero predecessors. Every item should
therefore be represented by three characteristics: its identification key, its
set of successors, and a count of its predecessors. Since the number »n of
elements in S'is not given a priori, the set is conveniently organized as a linked
list. Consequently, an additional entry in the description of each item contains
the link to the next item in the list. We will assume that the keys are integers
(but not necessarily the consecutive integers from 1 to n). Analogously,
the set of each item’s successors is conveniently represented as a linked list.
Each element of the successor list is described by an identification and a link
to the next item on this list. If we call the descriptors of the main list, in which
each item of S occurs exactly once, leaders, and the descriptors of elements
on the successor chains trailers, we obtain the following declarations of data
types:

type lref = tleader;
tref = trailer;
leader = record key, count: integer;
trail: tref;
next: lref (4.28)
end;
trailer = record id: Iref;
next: tref
end

Assume that the set S and its ordering relations are initially represented as
a sequence of pairs of keys in the input file. The input data for the example
in Fig. 4.13 are shown in (4.29) in which the symbols < are added for the sake
of clarity.

1<2 2<4 4<6 2<10 4<8 6<3 1<3 429
35 5<8 1<5 71<9 9<4 9<10 '

The first part of the topological sort program must read the input file
and transform the data into a list structure. This is performed by successively
reading a pair of keys x and y (x < y). Let us denote the pointers to their

SEC. 4.3 LINEAR LISTS 185

representations on the linked list of leaders by p and q. These records must
be located by a list search and, if not yet present, be inserted in the list. This
task is performed by a function procedure called L. Subsequently, a new entry
is added in the list of trailers of x, along with an identification of y; the
count of predecessors of y is incremented by 1. This algorithm is called
input phase (4.30). Figure 4.15 illustrates the data structure generated during
processing the input data (4.29) by (4.30) .This piece of program refers to a
function L(w) yielding the reference to the list component with key w (see
also Program 4.2). We assume that the sequence of input key pairs is termi-
nated by an additional zero.

{input phase} read(x);

new(head); tail := head; z := 0;

while x = 0 do

begin read(y); p := L(x); q := L(y); (4.30)
new(t); t1.id := q; t1.next := p?t.trail;)
pl.trail := t; ql.count := qt.count + 1;
read(x)

end

After the data structure of Fig. 4.15 has been constructed in this input phase,
the actual process of topological sorting can be taken up as described above.
But since it consists of repeatedly selecting an element with a zero count of
predecessors, it seems sensible to first gather all such elements in a linked
chain. Since we note that the original chain of leaders will afterwards no longer
be needed, the same field called next may be re-used to link the zero predeces-
sor leaders. This operation of replacing one chain by another chain occurs
frequently in list processing. It is expressed in detail in (4.31), and for reasons
of convenience it builds up the new chain in the reverse direction.

{search for leaders with O predecessors}
p = head; head := nil;
while p = tail do
begin g := p; p := ql.next;
if gT.count = 0 then (4.31)
begin {insert q1 in new chain}
ql.next := head; head := q
end
end

Referring to Fig. 4.15, we see that the next chain of leaders is replaced by
the one of Fig. 4.16 in which the pointers not depicted are left unchanged.

‘weidoad yiosdo], £q paressusd aamonys IsIT SI'p “Sid

1Xau

L] 1Xau

» 1

N
AN

® [° L |1es3
o |<«—1—o ° |<«—1+o ° - ° ° Y ° 1Xau
l 0 [4 [4 4 [4 l [4 l 0 1unod
6 L °] € 8 0L 9 14 4 l Aay

ex W_ peay

186

SEC. 4.3 LINEAR LISTS 187

1 7 1|

0 0 head

nil <

| |

l l Fig. 4.16 List of leaders with zero
counts.

After all this preparatory setting up of a convenient representation of
the partially ordered set S, we can finally proceed to the actual task of topo-
logical sorting, i.e., of generating the output sequence. In a first rough version
it can be described as follows:

q := head,;
while ¢ 7= nil do
begin {output this element, then delete it}
writeln(ql.key); z := z—1;
t := ql.trail; q := ql.next; (4.32)
“decrement the predecessor count of all its successors
on trailer list ¢; if any count becomes 0, insert this
element in the leader list ¢”
end

The statement in (4.32) that is to be still further refined constitutes one
more scan of a list [see schema (4.17)]. In each step, the auxiliary variable p
designates the leader element whose count has to be decremented and tested.

while ¢ = nil do
begin p := t1.id; pl.count := pt.count—1,;
if pt.count = 0 then
begin {insert p? in leader list}
plmext :=q; q:=p
end;
t 1= t].next

(4.33)

end

This completes the program for topological sorting. Note that a counter
z was introduced to count the leaders generated in the input phase. This
count is decremented each time a leader element is output in the output phase.
It should therefore return to O at the end of the program. Its failure to return
to 0 is an indication that there are elements left in the structure when none
is without predecessor. In this case the set .S is evidently not partially ordered.

The output phase programmed above is an example of a process that
maintains a list which pulsates, i.e., in which elements are inserted and
removed in an unpredictable order. It is therefore an example of a process
which utilizes the full flexibility afforded by the explicitly linked list.

Program 4.2 Topological Sorting.
program topsort(input,output);
type Iref = 1leader;
tref = Ttrailer;
leader = record key: integer;
count: integer;
trail: tref,

next: lref;
end ;
trailer = record id: Iref;
next: tref
end ;

var head, tail, p,q: Iref;
t: tref; z: integer;
Xx,y: integer;
function L(w: integer): lIref;
{reference to leader with key w}
var h: lref;
begin h := head; tailt.key := w; {sentinel}
while A1.key = w do h := hl.next;
if & = tail then
begin {no element with key w in the list}
new(tail); z := z+1;
ht.count := 0; hl.trail :=

nil; ht.next 1= tail
end ;
L:=nh
end {L} ;
begin {initialize list of leaders with a dummy}
new(head); tail := head; z := 0;
{input phase} read(x);
while x %= 0 do
begin read(y); writeln(x,y);
p = L(x); q := L(y);
new (f); t1.id := q; t}.next := p.trail;

pl.rail := t; ql.count := qf.count + 1;
read(x)

end ;
{search for leaders with count = 0}
p := head; head := nil;
while p == tail do
begin g := p; p := pl.next;
if gT.count = O then

begin gt.next := head; head := q
end

end ;

188

SEC. 4.4 TREE STRUCTURES 189

{output phase} q := head,
while ¢ = nil do
begin writeln(ql.key); z := z—1;
t := q.trail; q := q%.next;
while ¢ = nil do
begin p := t1.id; pt.count := pt.count — 1;
if pt.count = 0 then
begin {insert pt in g-list}
pl.next := q; q :=p
end ;
t := tl.next
end
end ;
if z 5= 0 then writeln (‘THIS SET IS NOT PARTIALLY ORDERED’)
end .

Program 4.2 (Continued)

4.4, TREE STRUCTURES
4.41. Basic Concepts and Definitions

We have seen that sequences and lists may conveniently be defined in
the following way: A sequence (list) with base type T is either

1. The empty sequence (list).
2. The concatenation (chain) of a T and a sequence with base type T.

Hereby recursion is used as an aid in defining a structuring principle,
namely, sequencing or iteration. Sequences and iterations are so common
that they are usually considered as fundamental patterns of structure and
behavior. But it should be kept in mind that they can be defined in terms of
recursion, whereas the reverse is not true, for recursion may be effectively
and elegantly used to define much more sophisticated structures. Trees are
a well-known example. Let a.tree structure be defined as follows: A free
structure with base type T is either

1. The empty structure.
2. A node of type T with a finite number of associated disjoint tree structures
of base type T, called subtrees.

From the similarity of the recursive definitions of sequences and tree
structures it is evident that the sequence (list) is a tree structure in which each
node has at most one “subtree.” The sequence (list) is therefore also called
a degenerate tree.

(a)

(A(B(D (1), E(J, K, L), C(F(O),G(M,N),HPH) (b)

KC—

0 (c)

Fig. 4.17 Representation of a tree structure: (a) Nested sets; (b)
nested parentheses; (c) indentation; (d) graph.

190

SEC. 4.4 TREE STRUCTURES 191

There are several ways to represent a tree structure. For example, let the
base type T range over the letters; such a tree structure is shown in various
ways in Fig. 4.17. These representations all show the same structure and are
therefore equivalent. It is the graph structure that explicitly illustrates the
branching relationships which, for obvious reasons, led to the generally used
name “tree.” Strangely enough, it is customary to depict trees upside down,
or—if one prefers to express this fact differently—to show the roots of trees.
The latter formulation, however, is misleading, since the top node (4) is
commonly called the root. Although we recognize that trees in nature are
somewhat more complicated creations than our abstractions, henceforth
we will call our tree structures simply zrees.

An ordered tree is a tree in which the branches of each node are ordered.
Hence the two ordered trees in Fig. 4.18 are distinct, different objects. A
node y which is directly below node x is called a (direct) descendant of x;
if x is at level i, then y is said to be a level i + 1. Inversely, node x is said to be
the (direct) ancestor of y. The root of a tree is defined to be at level 1. The
maximum level of any element of a tree is said to be its depth or height.

(») (A)
e e e e Fig. 4.18 Two distinct binary trees.

If an element has no descendants, it is called a terminal element or a
leaf; and an element which is not terminal is an interior node. The number
of (direct) descendants of an interior node is called its degree. The maximum
degree over all nodes is the degree of the tree. The number of branches or
edges which have to be traversed in order to proceed from the root to a node
x is called the path length of x. The root has path length 1, its direct descen-
dants have path length 2, etc. In general, a node at level i has path length i.
The path length of a tree is defined as the sum of the path lengths of all its
components. It is also called its internal path length. The internal path length
of the tree shown in Fig. 4.17, for instance, is 52. Evidently, the average
path length P, is

P, — % X i (4.34)

where n;, is the number of nodes at level i. In order to define what is called the
external path length, we extend the tree by a special node wherever a null
subtree was present in the original tree. In doing so, we assume that all nodes
are supposed to have the same degree, namely, the degree of the tree. Extend-
ing the tree in this way therefore amounts to filling up empty branches, where-
by the special nodes, of course, have no further descendants. The tree of

192 DYNAMIC INFORMATION STRUCTURES CHAP. 4

(8) (©

(D) (E) (F) (8) (H)
HOENOBOREORNOMEBORNONMON

Fig. 4.19 Ternary tree extended with special nodes.

Fig. 4.17 extended with special nodes is shown in Fig. 4.19 in which the special
nodes are represented by square boxes.

The external path length is now defined as the sum of the path lengths
over all special nodes. If the number of special nodes at level i is m,, then the
average external path length Py is

Py ==Y my-i (4.35)
i

1
-
In the tree shown in Fig. 4.19 the external path length is 153.

The number of special nodes m to be added in a tree of degree d directly
depends on the number # of original nodes. Note that every node has exactly
one edge pointing to it. Thus, there are m + n edges in the extended tree.
On the other hand, d edges are emanating from each original node, none from
the special nodes. Therefore, there exist dn + 1 edges, the 1 resulting from the
edge pointing to the root. The two results yield the following equation between
the number m of special nodes and »n of original nodes: dn + 1 = m + n, or

m=(d—Dn+1 (4.36)

The maximum number of nodes in a tree of a given height 4 is reached
if all nodes have d subtrees, except those at level A, all of which have none.
For a tree of degree d, level 1 then contains 1 node (namely, the root), level 2
contains its d descendants, level 3 contains the d? descendants of the d nodes
at level 2, etc. This yields

N =14+dtd 4 tad =S d (4.37)
=0

as the maximum number of nodes for a tree with height 4 and degree d.
For d = 2, we obtain

Ny(h) = "z; 22| (4.38)

SEC. 4.4 TREE STRUCTURES 193

Of particular importance are the ordered trees of degree 2. They are called
binary trees. We define an ordered binary tree as a finite set of elements
(nodes) which either is empty or consists of a root (node) with two disjoint binary
trees called the left and the right subtree of the root. In the following sections
we shall exclusively deal with binary trees, and we therefore shall use the word
“tree” to mean “ordered binary tree.” Trees with degree greater than 2 are
called multiway trees and are discussed in Sect. 5 of this chapter.

Familiar examples of binary trees are the family tree (pedigree) with
a person’s father and mother as his descendants (!), the history of a tennis
tournament, with each game being a node denoted by its winner and the
two previous games of the combatants as its descendants, or an arithmetic
expression with dyadic operators, with each operator denoting a branch node
with its operands as subtrees (see Fig. 4.20).

OO REORNO
Fig.420 T S
Q ° e 0 p:gssion (a _::ez /ZEEZS??:}T’ of the ex

We now turn to the problem of representation of trees. It is plain that the
illustration of such recursive structures in terms of branching structures
immediately suggests the use of our pointer facility. There is evidently no use
in declaring variables with a fixed tree structure; instead, we define the nodes
as variables with a fixed structure, i.e., of a fixed type, in which the degree
of the tree determines the number of pointer components referring to the
node’s subtrees. Evidently, the reference to the empty tree is denoted by
nil. Hence, the tree of Fig. 4.20 consists of components of a type defined as
follows

type node = record op: char;
left,right: Tnode (4.39)
end

and may then be constructed as shown in Fig. 4.21.

There clearly exist ways of representing the abstract idea of a tree struc-
ture in terms of other available data types, such as arrays. This is common
in all languages that do not provide the facility for allocating components
dynamically and for referencing them via pointers. In this case, the tree in

194 DYNAMIC INFORMATION STRUCTURES CHAP. 4

+ —_

/L‘\

| - | I ~
[[T

Fig. 4.21 Tree represented as data structure.

o

Fig. 4.20 might be represented by an array variable declared as

t: array[l .. 11] of
record op: char; (4.40)
left,right: integer
end

and with component values as shown in Table 4.3.

1 [+ 2 3
2 |+ 6 4
3 | — 9 s
4 |/ 7 8
s | * 10 11
6 | a 0 o
7 [s 0 0
8 | ¢ 0 0
9 [d 0 o0

10 | e 0 o

1 s 0 o

Table 4.3 Tree represented by an array.

Although the underlying, abstract structure of the data represented by
the array # is a tree, we shall not call this a tree but rather an array according
to the explicit declaration. We shall not further discuss other possibilities of
representing trees in systems that lack a dynamic allocation facility, for we

SEC. 4.4 TREE STRUCTURES 195

assume that programming systems and languages including this feature are
or will become commonly available.

Before investigating how trees might be used advantageously and how to
perform operations on trees, we give an example of how a tree may be con-
structed by a program. Assume that a tree is to be generated containing nodes
of the type defined in (4.39), with the values of the nodes being » numbers
read from an input file. In order to make the problem more challenging, let
the task be the construction of a tree with » nodes and minimal height.

In order to obtain a minimal height for a given number of nodes, one
has to allocate the maximum possible number of nodes of all levels except
the lowest one. This can clearly be achieved by distributing incoming nodes
equally to the left and right at each node. This implies that we structure the
tree for given n as shown in Fig. 4.22, forn =1, .

P,
ey

Fig. 4.22 Perfectly balanced trees.

The rule of equal distribution under a known number #n of nodes is
best formulated in recursive terms:

1. Use one node for the root.
2. Generate the left subtree with n/ = n div 2 nodes in this way.
3. Generate the right subtree with nr = n — nl/ — 1 nodes in this way.

The rule is expressed as a recursive procedure as part of Program 4.3 which
reads the input file and constructs the perfectly balanced tree. We note the
following definition:

A tree is perfectly balanced if for each node the numbers of nodes
in its left and right subtrees differ by at most 1.

196 DYNAMIC INFORMATION STRUCTURES CHAP. 4

program buildtree(input,output);
type ref = tnode;

node = record key: integer;
left, right: ref
end ;
var n: integer; root: ref;

function tree(n: integer): ref,
var newnode: ref;
x, nl, nr: integer;
begin {construct perfectly balanced tree with n nodes}
if n = O then tree := nil else
begin n/ := n div 2; nr := n—nl—1;
read(x); new(newnode);
with newnode? do
begin key := x; left := tree(nl); right := tree(nr)
end ;
tree := newnode
end
end {tree} ;

procedure printtree(t: ref; h: integer);
var i: integer;
begin {print tree t with indentation h}
if ¢+ % nil then
with ¢} do
begin printtree(left, h-+1);
for i := 1 to h do write(’ ;s
writeln (key);
printtree(right, h+1)
end
end {printtree} ;

begin { first integer is number of nodes}
read(n);
root := tree(n);
printtree(root,0)

end .

Program 4.3 Construct Perfectly Balanced Tree.

Assume, for example, the following input data for a tree with 21 nodes.
21 8 9 11 15 19 20 21 7 3 2 1 5 6 4 13 14
10 12 17 16 18

SEC. 4.4 TREE STRUCTURES 197

Fig. 4.23 Tree generated by Program 4.3.

Program 4.3 then constructs the perfectly balanced tree shown in Fig. 4.23.

Note the simplicity and transparence of this program that is obtained
through the use of recursive procedures. It is obvious that recursive algo-
rithms are particularly suitable when a program is to manipulate information
whose structure is itself defined recursively. This is again manifested in the
procedure which prints the resulting tree: the empty tree results in no print-
ing, the subtree at level L in first printing its own left subtree, then the
node, properly indented by preceding it with L blanks, and finally in printing
its right subtree.

The advantage of the recursive algorithm becomes particularly plain by
comparing it with a non-recursive formulation. The reader is explicity urged
to use his ingenuity in writing a non-recursive equivalent of the above tree
generator before looking at (4.41). This program is listed without further
comments and may serve as a challenge for the reader to discover how and
why it works.

program buildtree(input,output);
type ref = Tnode;
node = record key: integer;
left, right: ref
end ;
var i,nnlnr.x: integer;
root,p,q,r,dmy: ref;
s: array [1..30] of {stack}
record n: integer; rf: ref
end ;

(4.41)

198 DYNAMIC INFORMATION STRUCTURES CHAP. 4

begin { first integer is number of nodes}
read(n); new(root); new(dmy); {dummy}
i:=1; s[1].n := n; s[1].rf := root;
repeat n := s[i] .n; r := s[i] .f; i := i—1; {pop}
if n = O then r1.right := nil else
begin p := dmy;
repeat nl := n div 2; nr := n—nl—1;
read(x); new(q); qt.key := x;
i:=i+1; s[iln := nr; slilef := q; {push}
n:= nl; ptlileft :=q; p:=q
until » = 0;
ql.left := nil; ri.right := dmy?.left
end
until i = 0;
printtree (root?.right,0)
end .

4.4.2. Basic Operations on Binary Trees

There are many tasks that may have to be perfomed on a tree structure;
a common one is that of executing a given operation P on each element of
the tree. P is then understood to be a parameter of the more general task of
visiting all nodes or, as it is usually called, of tree traversal.

If we consider the task as a single sequential process, then the individual
nodes are visited in some specific order and may be considered as being laid
out in a linear arrangement. In fact, the description of many algorithms is
considerably facilitated if we can talk about processing the next element in
the tree based on an underlying order.

There are three principal orderings that emerge naturally from the
structure of trees. Like the tree structure itself, they are conveniently expressed
in recursive terms. Referring to the binary tree in Fig. 4.24 in which R denotes
the root and 4 and B denote the left and right subtrees, the three orderings
are

1. Preorder : R,A,B (visit root before the subtrees)
2. Inorder A,R,B
3. Postorder: A,B,R (visit root after the subtrees)

& Fig. 4.24 Binary tree.

SEC. 4.4 TREE STRUCTURES 199

Traversing the tree of Fig. 4.20 and recording the characters seen
at the nodes in the sequence of encounter, we obtain the following or-
derings:

1. Preorder : x+albc—d=xef
2. Inorder a+bl cxd—exf
3. Postorder: abce|l+def x—x

We recognize the three forms of expressions: preorder traversal of the
expression tree yields prefix notation; postorder traversal generates postfix
notation; and inorder traversal yields conventional infix notation, although
without the parentheses necessary to express operator precedences.

Let us now formulate the three methods of traversal by three concrete
programs with the explicit parameter ¢ denoting the tree to be operated upon
and with the implicit parameter p denoting the operation to be performed on
each node. Assume the following definitions:

type ref = tTnode
node = record . . .
left,right: ref
end
The three methods are now readily formulated as recursive procedures;
they demonstrate again the fact that operations on recursively defined data
structures are most conveniently defined as recursive algorithms.

(4.42)

procedure preorder(t: ref);
begin if ¢ = nil then
begin P(¢);
preorder(t1.left); (4.43)
preorder(t1.right)
end
end

procedure inorder(t: ref);
begin if ¢ 7= nil then
begin inorder(t].left);
P(); 4.49)
inorder(t].right)
end
end

procedure postorder(t: ref);
begin if ¢ -~ nil then
begin postorder(t?.left);
postorder(t?.right); (4.45)
P@)
end
end

200 DYNAMIC INFORMATION STRUCTURES CHAP. 4

Note that the pointer 7 is passed as a value parameter. This expresses the
fact that the relevant entity is the reference to the considered subtree and not
the variable whose value is the pointer, and which could be changed in case
t were passed as a variable parameter.

An example of a tree traversing routine is that of printing a tree, with
appropriate indentation indicating each node’s level (see Program 4.3).

Binary trees are frequently used to represent a set of data whose elements
are to be retrievable through a unique key. If a tree is organized in such a
way that for each node ¢, all keys in the left subtree of ¢, are less than the key
of t,, and those in the right subtree are greater than the key of ¢, then this
tree is called a search tree. In a search tree it is possible to locate an arbitrary
key by starting at the root and proceeding along a search path switching to
a node’s left or right subtree by a decision based on inspection of that node’s
key only. As we have seen, n elements may be organized in a binary tree of
a height as little as log n. Therefore, a search among nitems may be performed
with as few as log n comparisons if the tree is perfectly balanced. Obviously,
the tree is a much more suitable form for organizing such a set of data than
the linear list used in the previous section.

As this search follows a single path from the root to the desired node, it
can readily be programmed by iteration (4.46)

function loc(x: integer; t: ref): ref;
var found: boolean,
begin found := false;
while (¢ = nil) A —found do
begin
if t1.key = x then found := true else
if t7.key > x then ¢t := t1.left else t := t1.right
end;
loc 1=t
end

(4.46)

The function loc(x, r) has the value nil if no key with value xisfound in the
tree with root z. As in the case of the search through a list, the complexity
of the termination condition gives rise to a search for a better solution. It
consists in the use of a sentinel at the end of the list. This technique is equally
applicable in the case of a tree. The use of pointers makes it possible for all
branches of the tree to terminate with the same, identical sentinel. The result-
ing structure is no longer a tree, but rather a tree with all leaves tied down by
strings to a single anchor point (Fig. 4.25). The sentinel may be considered as
a common representative of all external nodes by which the original tree was
extended (see Fig. 4.19). The resulting, simplified search routine is shown in
(4.47).

SEC. 4.4 TREE STRUCTURES 201

-
w
[«)]

—L]

Fig. 4.25 Search tree with sentinel.

function loc(x: integer; t: ref): ref;
begin s1.key := x; {sentinel}
while ¢1.key %= x do (4.47)
if x < t1.key then ¢t := (].left else ¢t := t1.right;
loc 1=t
end

Note that in this case loc(x,t) obtains the value s, i.e., the pointer to the
sentinel, if no key with value x is found in the tree with root ¢. s simply assumes
the role of the nil pointer.

4.4.3. Tree Search and Insertion

The full power of the dynamic allocation technique with access through
pointers is hardly displayed by those examples in which a given set of data is
built, and thereafter kept unchanged. More suitable examples are those
applications in which the structure of the tree itself varies, i.e., grows and/or
shrinks during the execution of the program. This is also the case in which
other data representations, such as the array, fail and in which the tree with
elements linked by pointers emerges as the appropriate solution.

We shall first consider only the case of a steadily growing but never
shrinking tree. An appropriate example is the concordance problem which
was already investigated in connection with linked lists. It is now to be
revisited. In this problem a sequence of words is given, and the number of
occurrences of each word has to be determined. This means that—starting

202 DYNAMIC INFORMATION STRUCTURES CHAP. 4

out with an empty tree—each word is searched in the tree. If it is found, its
occurrence count is incremented; otherwise it is inserted as a new word
(with a count initialized to 1). We call the underlying task tree search with
insertion. The following data type definitions are assumed:

type ref = Tword;
word = record
key: integer,
count: integer; (4.48)
left, right: ref
end

Assuming moreover a source file f of keys and a variable denoting the root
of the search tree, we may formulate the program as

reset(f);
while —eof(f) do (4.49)
begin read(f, x); search(x,root) end

Finding the search path is again straightforward. However, if it leads to
a “dead end” (i.e., to an empty subtree designated by a pointer value nil),
then the given word must be inserted in the tree at the place of the empty
subtree. Consider, for example, the binary tree shown in Fig. 4.26 and the
insertion of the word “Paul.” The result is shown in dotted lines in the
same picture.

The entire operation is shown in Program 4.4. The search process is
formulated as a recursive procedure. Note that its parameter p is a variable

l

Normal 2
|
Georgel 1 PeterI 2
VA I N\ / I \
/
/N A
I"__"/ﬂ’—
Ann | 5 Maryl 3 Paul I_1 Walterl 4

—
| |
| |
[S

| I | | ! |
| | |
| S E |

Fig. 4.26 Insertion in ordered binary tree.

SEC. 4.4 TREE STRUCTURES 203

parameter and not a value parameter. This is essential because in the case
of insertion a new pointer value must be assigned to the variable which pre-
viously held the value nil. Using the input sequence of 21 numbers that had
been applied to Program 4.3 to construct the tree of Fig. 4.23, Program 4.4
yields the binary search tree shown in Fig. 4.27.

Fig. 4.27 Search tree generated by Pro-
gram 4.4.

Program 4.4 Tree Search and Insertion.

program treesearch(input,output);
{binary tree search and insertion}
type ref = fword,
word = record key: integer;
count: integer;
left, right: ref;
end ;
var root: ref; k: integer;

procedure printtree(w: ref; l: integer);
var i: integer;
begin if w = nil then
with w{ do
begin printtree(left, 14-1);
for i := 1 to / do write(’ ;
writeln(key);
printtree(right, 14-1)
end
end ;

204 DYNAMIC INFORMATION STRUCTURES CHAP. 4

procedure search(x: integer; var p: ref);
begin
if p = nil then
begin {word is not in tree; insert it}
new (p);
with pT do
begin key := x; count := 1; left := nil; right := nil
end
end else
if x < pt.key then search(x, p1.left) else
if x > p?.key then search(x, p1.right) else
pt.count := pl.count + 1
end {search} ;
begin root := nil;
while —eof (input) do
begin read(k); search(k, root)
end ;
printtree(root,0)
end .

Program 4.4 (Continued)

The use of a sentinel again simplifies the task somewhat, as is shown in
(4.50). Clearly, at the start of the program the variable root must be initialized
by the pointer to the sentinel instead of the value nil, and before each search
the searched value x must be assigned to the key field of the sentinel.

procedure search(x: integer; var p: ref);

begin
if x < p1.key then search(x, p1.left) else
if x > p?t.key then search(x, p?.right) else
if p %= s then pl.count := pt.count + 1 else

begin {insert} new(p); (4.50)
with pT do
begin key := x; left := s; right := s; count := 1
end

end

end

Once again, and for the last time, we will develop an alternative version of
this program, refraining from the use of recursion. Avoiding recursion is not
as trivial now as without insertion, for if an insertion has to be performed, the
traversed path must be remembered at least one step backward. This function
of remembering has been automatically achieved in Program 4.4 through
the use of a variable parameter.

SEC. 4.4 TREE STRUCTURES 205

In order to link the inserted component correctly, we must know the
reference to its ancestor and know whether it is to be inserted as the ancestor’s
left or right subtree. For this purpose, two variables p2 and d (for direction)
are introduced.

procedure search(x: integer; root: ref);
var pl,p2: ref; d: integer;
begin p2 := root; pl := p2t.right; d := 1;
while (pl=£nil) A (d+£0) do
begin p2 := pl;
if x < pl7.key then
begin pl := plf.left; d := —1 end else
if x > plf.key then
begin pl := plt.right; d := 1 end else
d:=0
end ; 4.51)
if d = 0 then plf.count := plt.count + 1 else
begin {insert} new(pl);
with pl11 do
begin key := x; left := nil; right := nil; count := 1
end ;
if d < O then p21.left 1= pl else p21.right := pl
end
end

As in the case of list search and insertion, two pointers pl and p2 are used
which traverse the search path such that p2 always designates the ancestor
of p11. In order to start the search process with this condition being satisfied,
an auxiliary and dummy element is introduced, designated by the pointer
called root. The origin of the actual search tree is designated by the pointer
root?.right. The program must therefore start with the statements

new(root); root!.right := nil
in place of the original assignment
root := nil

Although the purpose of this algorithm is searching, it can be used for
sorting as well. In fact, it resembles the sorting by insertion method quite
strongly, and because of the use of a tree structure instead of an array, the
need for relocation of the components above the insertion point vanishes.
Tree sorting can be programmed to be almost as efficient as the best array
sorting methods known. But a few precautions must be taken. Of course,
the case of encountering a matching key must be treated differently now. If
the case x = p?.key is handled identically to the case x > p1.key, then the
algorithm represents a stable sorting method, i.e., items with identical keys

206 DYNAMIC INFORMATION STRUCTURES CHAP. 4

turn up in the same sequence when scanning the tree in normal order as when
they were inserted.

In general, there are better ways to sort, but in applications in which
searching and sorting are both needed, the tree search and insertion algorithm
is strongly recommended. It is, in fact, very often applied in compilers and
in data banks to organize the objects to be stored and retrieved. An appro-
priate example is the construction of a cross-reference index for a given text.
Let us pursue this problem in detail.

Our task is to construct a program that (while reading a text f and
printing it after supplying consecutive line numbers) collects all words of
this text, thereby retaining the numbers of the lines in which each word
occurred. When this scan is terminated, a table is to be generated containing
all collected words in alphabetical order with lists of their occurrences.

Obviously, the search tree (also called a lexicographic tree) is a most
suitable candidate for representing the words encountered in the text.
Each node now not only contains a word as key value, but it is also the
head of a list of line numbers. We shall call each recording of an occurrence
an item. Hence, we encounter both trees and linear lists in this example. The
program consists of two main parts (see Program 4.5), namely, the scanning

Program 4.5 Cross Reference Generator.

program crossref (f,output);
{cross reference generator using binary tree}
const ¢l = 10; {length of words}
c2 = 8§; {numbers per line}
3 = 6; {digits per number}
c4 = 9999; {max line number}
type alfa = packed array [1.. cl] of char;
wordref = tword,
itemref = litem;
word = record key: alfa;
first, last: itemref;
left, right: wordref

end ;
item = packed record
Ino: 0..c4;
next: itemref
end ;

var root: wordref;
k,k1: integer;
n: integer; {current line number}
id: alfa;
[t text;
a: array [1..cl] of char;

SEC. 4.4 TREE STRUCTURES

procedure search (var wl: wordref);
var w: wordref; x: itemref,
begin w := wl;
if w = nil then
begin new(w); new(x);

with w! do
begin key := id; left := nil; right := nil;
first 1= x; last 1= x
end ;
xt.dno := n; x7.next := nil; wl := w
end else

if id < w?.key then search(w?.left) else
if id > w?1.key then search(w?.right) else
begin new(x); x1.lno := n; xt.next := nil;
wi.lastl.next := x; wl.last := x
end
end {search} ;
procedure printtree(w: wordref);
procedure printword(w: word);
var [: integer; x: itemref;
begin write (' ', w.key);
x = w.first; | := 0;
repeat if / = ¢2 then
begin writeln;
l:= 0; write (" ":c141)
end ;
I := I4+1; write (x1.Ino:c3); x := x1.next
until x = nil;
writeln
end {printword} ;
begin if w == nil then
begin printtree(w?.left);
printword(w1); printtree(w?!.right)
end
end {printtree} ;
begin root := nil; n := 0; k1 := cl;
page (output); reset(f);
while —eof (/) do
begin if n = c4 then n := 0;
n := n+1; write (n:c3); {next line}
write (' ');

Program 4.5 (Continued)

207

while —eoln (f) do
begin {scan non-empty line}
if /7 in ['A"..’Z'] then
begin k := 0;
repeat if £ << c1 then
begin k := k+1; a[k] := f71;
end ;
write (f1); get (f)
until —(f1 in ['A".."2,/0"..'9]);
if kK > k1 then k1 := k else
repeat alkl] := " '; Kkl := kl—1
until k1 = k;
pack (a,1,id); search(root)
end else
begin {check for quote or comment}
if /1 = """ then
repeat write(f1); get(f)
until /T = """’ else
if /1 = '{’ then
repeat write(f1); get(f)
until /1 ="'} ;
write (f1); get (f)

end
end ;
writeln; get(f)
end ;
page(output); printtree(root);
end .

Program 4.5 (Continued)

phase and the table printing phase. The latter is a straightforward application
of a tree traversal routine in which visiting each node implies the printing of
the key value (word) and the scanning of its associated list of line numbers
(items). Following are further clarifications regarding the Cross-Reference
Generator of Program 4.5:

1. A word is considered as any sequence of letters and digits starting with
a letter.

2. Only the first ¢l characters are retained as key. Thus, two words not
differing in their c1 first characters are considered identical.

3. The cl characters are packed into an array id (type alfa). If cl is suffi-
ciently small, many computers will be able to compare such packed arrays
by a single instruction.

4. The variable k1 is used as an index that maintains the following invariant

208

SEC. 4.4 TREE STRUCTURES 209

condition about the character buffer a:
alil="" fori=k1-41...cl

Words consisting of fewer than cl characters are extended by an appro-
priate number of blanks.

. It is desirable that the line numbers be printed in ascending order in the
cross-reference index. Therefore, the item lists must be generated in the
same order as they are scanned upon printing. This requirement suggests
the use of two pointers in each word node, one referring to the first, and
one referring to the last item on the list.

. The scanner is constructed so that words within quotes and within
comments are omitted from the index, assuming that quotations and
comments do not extend over line ends.

Table 4.4 shows the results of processing a short program text.

Table 4.4 Sample Output of Program 4.5.

1 PROGRAM PERMUTE (OUTPUT);

2 CONST N = 4;

3 VAR I|: INTEGER;

4 A: ARRAY [1..N] OF INTEGER;

5

6 PROCEDURE PRINT;

7 VAR I: INTEGER;

8 BEGIN FOR | := 1 TO N DO WRITE (A[1]:3);
9 WRITELN

10 END {PRINT} ;

1

12 PROCEDURE PERM (K: INTEGER);

13 VAR I,X: INTEGER;

14 BEGIN

15 IF K = 1 THEN PRINT ELSE

16 BEGIN PERM (K-1);

17 FOR | := 1 TO K-1 DO

18 BEGIN X := A[l]; A[l] := A[K]; A[K] := X;
19 PERM (K-1);

20 X := A[l; A[l] := A[K]; AK] := X;
21 END

22 END

23 END {PERM} ;

24

25 BEGIN

26 FOR I := 1 TO N DO A[l] := I;

27 PERM (N)
28 END .

210 DYNAMIC INFORMATION STRUCTURES

ARRAY
A

BEGIN
CONST
DO
ELSE
END
FOR

IF
INTEGER
|

K

N

OF
OUTPUT
PERMUTE
PERM
PRINT
PROCEDURE
PROGRAM
THEN

T0

VAR
WRITELN
WRITE

X

4.4.4. Tree Deletion

20

N -
onN

-

Y
W WWOwwWwoOuou—=0O0N==>0-N

-

20
14

17

21
17

20
15

16
15
12

18

Table 4.4 (Continued)

18
26
16
26

22
26

26
16

19

26
13

18

18

18

23

12

26
17

26

27

20

18

25

28

13
13
26
18

27

20

18

17

18

20

18

19

CHAP. 4

20

18

20

We now turn to the inverse problem of insertion, namely, deletion.
Our task is to define an algorithm for deleting, i.e., removing the node with
key x in a tree with ordered keys. Unfortunately, removal of an element is
not generally as simple as insertion. It is straightforward if the element to
be deleted is a terminal node or one with a single descendant. The difficulty
lies in removing an element with two descendants, for we cannot point in
two directions with a single pointer. In this situation, the deleted element is
to be replaced by either the rightmost element of its left subtree or by the left-
most node of its right subtree, both of which have at most one descendant.
The details are shown in the recursive procedure called delete (4.52). This
procedure distinguishes among three cases:

1. There is no component with a key equal to x.

SEC. 4.4 TREE STRUCTURES 21

2. The component with key x has at most one descendant.
3. The component with key x has two descendants.

procedure delete (x: integer; var p: ref);
var q: ref;
procedure del (var r: ref);
begin if r1.right = nil then del (r1.right) else
begin g1.key := r1.key; q1.count := rt.count;
q = r; r:= rlleft
end
end ;
begin {delete} (4.52)
if p = nil then writeln (" WORD IS NOT IN TREE') else
if x < p1.key then delete(x, pt.left) else
if x > p1.key then delete(x, p?.right) else
begin {delete pt} q := p;
if gt1.right = nil then p := g1.left else
if g1.left = nil then p := q1.right else del (q1.left);
{dispose(q)}
end
end {delete}

The auxiliary, recursive procedure del is activated in case 3 only. It
“descends” along the rightmost branch of the left subtree of the element
q? to be deleted, and then it replaces the relevant information (key and
count) in g1 by the corresponding values of the rightmost component r{
of that left subtree, whereafter r} may be disposed of. The unspecified pro-
cedure dispose(q) may be considered the inverse or opposite of new(q). The
latter allocates storage for a new component, but the former may be used to
indicate to a computer system that storage occupied by g1 is again disposable
and reusable (sort of recycling of storage).

In order to illustrate the functioning of procedure (4.52), we refer to Fig.
4.28. Consider the tree (a); then delete successively the nodes with keys 13,
15, 5, 10. The resulting trees are shown in Fig. 4.28 (b-e).

4.4.5. Analysis of Tree Search and Insertion

It is a natural—and healthy—reaction to be suspicious of the algorithm
of tree search and insertion. At least one should retain some skepticism until
having been given a few more details about its behavior. What worries many
programmers at first is the peculiar fact that generally we do not know how
the tree will grow; we have no idea about the shape that it will assume.
We can only guess that it will most probably not be the perfectly balanced

212 DYNAMIC INFORMATION STRUCTURES CHAP. 4

(a) (b)

®) ! (&) (®
(c) (d) (e)

Fig. 4.28 Tree deletion.

tree. Since the average number of comparisons needed to locate a key in a
perfectly balanced tree with n nodes is approximately # = log n, the number
of comparisons in a tree generated by this algorithm will be greater than
h. But how much greater?

First of all, it is easy to find the worst case. Assume that all keys arrive in
already strictly ascending (or descending) order. Then each key is appended
immediately to the right (left) of its predecessor, and the resulting tree
becomes completely degenerate, i.e., it turns out to be a linear list. The average
search effort is then n/2 comparisons. This worst case evidently leads to a
very poor performance of the search algorithm, and it seems to fully justify
our skepticism. The remaining question is, of course, how likely this case
will be. More precisely, we should like to know the length a, of the search
path averaged over all n keys and averaged over all n! trees which are
generated from the n! permutations of the original » distinct keys. This prob-
lem of algorithmic analysis turns out to be fairly straightforward, and it is
presented here as a typical example of analyzing an algorithm as well as for
the practical importance of its result.

Given are n distinct keys with values 1,2,...,n. Assume that they
arrive in a random order. The probability of the first key—which notably
becomes the root node—having the value i is 1/n. Its left subtree will even-
tually contain i — 1 nodes, and its right subtree » — i nodes (see Fig. 4.29).
Let the average path length in the left subtree be denoted by a;_,, and the one
in the right subtree is a,_,, again assuming that all possible permutations of
the remaining n — 1 keys are equally likely. The average path length in a tree

SEC. 4.4 TREE STRUCTURES 213

A A Fig. 4.29 Weight distribution of
branches.

with n nodes is the sum of the products of each node’s level and its probability
of access. If all nodes are assumed to be wanted with equal likelihood, then

a, =3 p, (4.53)
i=1

where p; is the path length of node /.
In the tree in Fig. 4.29 we divide the nodes into three classes:

1. The i — 1 nodes in the left subtree have an average path length a;,_, 4+ 1.
2. The root has a path length of 1.
3. Then — inodes in the right subtree have an average path length a,_; + 1.

Hence, (4.53) can be expressed as a sum of three terms

e oA | e A A A | Lt O)

The desired quantity a, is now derived as the average of a{’ over all
i=1...n,i.e., over all trees with the key 1,2,...,n at the root.

a_l" 1 n—i
" n n " n

—14+ 7117.2‘{[(' Da,, + (n — ia,_] (4.55)

2 & 2 .
=l+?;(l—l)a,_,=l+ﬁl;l-a,

Equation (4.55) is a recurrence relation for a, of the form a, =
fi(a,, a,, ..., a, ;). From this we can derive a simpler recurrence relation
of the form a, = f,(a,_,) as follows:

From (4.55) we derive directly

W a=1+2 21W4+2m mm+%§m,

(2) a,-y = 1+ (n_——l)‘z ‘;ll.'a‘-
Multiplying (2) by ((n — 1)/2)?2, we obtain
® A¥ia=0"ae -1

214 DYNAMIC INFORMATION STRUCTURES CHAP. 4

and substituting (3) in (1), we find

a, = #((nz —Da, , +21—1) (4.56)

It turns out that a, can be expressed in non-recursive, closed form in terms
of the harmonic function

Hy=1+5 44+ 4+
(4.57)

n+1H”_3

a,=?2 .

[The skeptical reader should verify that (4.57) satisfies the recurrence relation
(4.56).]
From Euler’s formula (using Euler’s constant y = 0.577)
1

H,=y+In(n) + 15

we derive, for large n, the relationship
a,=2[In(n) +y] —3=2Inn) — ¢
Since the average path length in the perfectly balanced tree is approximately
a, =log(n) — 1 (4.58)

we obtain, neglecting the constant terms which become insignificant for large
n’
lim % — 217 500 ~1.386 (4.59)
no d, lOgn

What does the result (4.59) of this analysis teach us? It tells us that by
taking the pains of always constructing a perfectly balanced tree instead of
the “random” tree obtained from Program 4.4, we could—always provided
that all keys are looked up with equal probability—expect an average
improvement in the search path length of at most 39 9%,. Emphasis is to be
put on the word “average,” for the improvement may of course be very
much greater in the unhappy case in which the generated tree had completely
degenerated into a list, which, however, is very unlikely to occur (if all
permutations of the n keys to be inserted are equally probable). In this con-
nection it is noteworthy that the expected average path length of the “random”
tree grows also strictly logarithmically with the number of its nodes, even
though in the worst case the path length grows linearly.

The figure of 399, imposes a limit on the amount of additional effort
that may be spent profitably on any kind of re-organization of the tree’s
structure upon insertion of keys. Naturally, the ratio between the frequencies
of access (retrieval) of nodes (information) and of insertion significantly
influences the payoff limits of any such undertaking. The higher this ratio,

SEC. 4.4 TREE STRUCTURES 215

the higher is the payoff of a re-organization procedure. The 399, figure is
low enough that in most applications improvements of the straight tree inser-
tion algorithm do not pay off unless the number of nodes and the access vs.
insertion ratio are large (or if one is afraid of the worst case).

4.4.6. Balanced Trees

From the preceding discussion it is clear that an insertion procedure that
always restores the trees’ structure to perfect balance has hardly any chance
of being profitable because the restoration of perfect balance after a random
insertion is a fairly intricate operation. Possible improvements lie in the
formulation of less strict definitions of “balance.” Such “imperfect” balance
criteria should lead to simpler tree re-organization procedures at the cost of
only a slight deterioration of average search performance.

One such definition of balance has been postulated by Adelson-Velskii
and Landis [4-1]. The balance criterion is the following:

A tree is balanced if and only if for every node the heights of its
two subtrees differ by at most 1.

Trees satisfying this condition are often called AVL-trees (after their
inventors). We shall simply call them balanced trees because this balance
criterion appears a most suitable one. (Note that all perfectly balanced trees
are also AVL-balanced.)

The definition is not only simple, but it also leads to a manageable
rebalancing procedure and an average search path length practically identical
to that of the perfectly balanced tree.

The following operations can be performed on balanced trees with
O (log n) units of time, even in the worst case:

1. Locate a node with a given key.
2. Insert a node with a given key.
3. Delete the node with a given key.

These statements are direct consequences of a theorem proved by Adelson-
Velskii and Landis, which guarantees that a balanced tree will never be more
than 45 % higher than its perfectly balanced counterpart, no matter how many
nodes there are. If we denote the height of a balanced tree with n nodes by
hy(n), then

log (n + 1) < hy(n) < 1.4404-log (n + 2) — 0.328 (4.60)
The optimum is of course reached if the tree is perfectly balanced for n =
2k — 1. But which is the structure of the worst AVL-balanced tree?

In order to find the maximum height % of all balanced trees with n nodes,
let us consider a fixed 4 and try to construct the balanced tree with the

216 DYNAMIC INFORMATION STRUCTURES CHAP. 4

minimum number of nodes. This strategy is recommended because, as in the
case of the minimal A, the value can be attained only for certain specific
values of n. Let this tree of height A be denoted by T,. Clearly, T, is the
empty tree, and T, is the tree with a single node. In order to construct the
tree T, for h > 1, we will provide the root with two subtrees which again have
a minimal number of nodes. Hence, the subtrees are also 7’s. Evidently,
one subtree must have height A — 1, and the other is then allowed to have
a height of one less, i.e., of & — 2. Figure 4.30 shows the trees with height 2,

Fig. 4.30 Fibonacci-trees of height 2, 3, and 4.

3, and 4. Since their composition principle very strongly resembles that of
Fibonacci numbers, they are called Fibonacci-trees. They are defined as
follows:

1. The empty tree is the Fibonacci-tree of height 0.

2. A single node is the Fibonacci-tree of height 1.

3. If T,_, and T,_, are Fibonacci-trees of heights # — 1 and # — 2, then T,
=<{T,_,, x, T,_,> is a Fibonacci-tree of height A.

4. No other trees are Fibonacci-trees.

The number of nodes of T, is defined by the following simple recurrence
relation:
Ny, =0, N, =1
N,=Ny,.;+1+N,,
The N, are those numbers of nodes for which the worst case (upper limit of /)
of (4.60) can be attained.

(4.61)

4.4.7. Balanced Tree Insertion

Let us now consider what may happen when a new node is inserted in
a balanced tree. Given a root r with the left and right subtrees L and R,
three cases must be distinguished. Assume that the new node is inserted in L
causing its height to increase by 1:

1. hy = hg: L and R become of unequal height, but the balance criterion
is not violated.

SEC. 4.4 TREE STRUCTURES 217

2. h;, < hg: L and R obtain equal height, i.e., the balance has even been
improved.

3. hy > hg: the balance criterion is violated, and the tree must be restruc-
tured.

Consider the tree in Fig. 4.31. Nodes with keys 9 and 11 may be inserted
without rebalancing; the tree with root 10 will become one-sided (case 1);
the one with root 8 will improve its balance (case 2). Insertion of nodes 1,
3,5, or 7, however, requires subsequent rebalancing.

Fig. 4.31 Balanced tree.

Some careful scrutiny of the situation reveals that there are only two
essentially different constellations needing individual treatment. The remain-
ing ones can be derived by symmetry considerations from those two. Case
1 is characterized by inserting keys 1 or 3 in the tree of Fig. 4.31, Case 2 by
inserting nodes 5 or 7.

The two cases are generalized in Fig. 4.32 in which rectangular boxes
denote subtrees, and the height added by the insertion is indicated by crosses.
Simple transformations of the two structures restore the desired balance.
Their result is shown in Fig. 4.33; note that the only movements allowed are
those occurring in the vertical direction, whereas the relative horizontal
positions of the shown nodes and subtrees must remain unchanged.

Fig. 4.32 Imbalance resulting from insertion.

218 DYNAMIC INFORMATION STRUCTURES CHAP. 4

Case 2
Case 1

Fig. 4.33 Restoring the balance.

An algorithm for insertion and rebalancing critically depends on the way
information about the tree’s balance is stored. An extreme solution lies in
keeping balance information entirely implicit in the tree structure itself.
In this case, however, a node’s balance factor must be rediscovered each time
it is affected by an insertion, resulting in an excessively high overhead. The
other extreme is to attribute an explicitly stored balance factor to every node.
The definition (4.48) of the node type is then extended into

type node = record key: integer;
count: integer;
left,right: ref; (4.62)
bal: —1..+1
end

We shall subsequently interpret a node’s balance factor as the height of
its right subtree minus the height of its left subtree, and we shall base the
resulting algorithm on the node type (4.62).

The process of node insertion consists essentially of the following three
consecutive parts:

1. Follow the search path until it is verified that the key is not already in
the tree.

2. Insert the new node and determine the resulting balance factor.

3. Retreat along the search path and check the balance factor at each node.

Although this method involves some redundant checking (once balance
is established, it need not be checked on that node’s ancestors), we shall first
adhere to this evidently correct schema because it can be implemented through
a pure extension of the already established search and insertion procedure
of Program 4.4. This procedure describes the search operation needed at each
single node, and because of its recursive formulation it can easily accom-
modate an additional operation “on the way back along the search path.”
At each step, information must be passed as to whether or not the height of

SEC. 4.4 TREE STRUCTURES 219

the subtree (in which the insertion had been performed) had increased. We
therefore extend the procedure’s parameter list by the Boolean 4 with the
meaning “the subtree height has increased.” Clearly, h must denote a variable
parameter since it is used to transmit a result.

Assume now that the process is returning to a node p? from the left
branch (see Fig. 4.32), with the indication that it has increased its height.
We now must distinguish between the three situations involving the subtree
heights prior to insertion:

1. h, << hg, p1.bal = +1, the previous imbalance at p has been equilibrated.
2. h, = hg, pt.bal = 0, the weight is now slanted to the left.
3. hy > hg, p1.bal = —1, rebalancing is necessary.

In the third case, inspection of the balance factor of the root of the left
subtree (say, pl71.bal) determines whether case 1 or case 2 of Fig. 4.32 is
present. If that node has also a higher left than right subtree, then we have
to deal with case 1, otherwise with case 2. (Convince yourself that a left
subtree with a balance factor equal to 0 at its root cannot occur in this case.)
The rebalancing operations necessary are entirely expressed as sequences of
pointer re-assignments. In fact, pointers are cyclically exchanged, resulting
in either a single or a double rotation of the two or three nodes involved. In
addition to pointer rotation, the respective node balance factors also have to
be adjusted. The details are shown in the search, insertion, and rebalancing
procedure (4.63).

The working principle is shown by Fig. 4.34. Consider the binary tree

(a) (b) (c)

(d) (e) (f)

Fig. 4.34 [Insertions in balanced tree.

220 DYNAMIC INFORMATION STRUCTURES CHAP. 4

(a) which consists of two nodes only. Insertion of key 7 first results in an
unbalanced tree (i.e., a linear list). Its balancing involves a RR single rotation,
resulting in the perfectly balanced tree (b). Further insertion of nodes 2 and 1
result in an imbalance of the subtree with root 4. This subtree is balanced by
an LL single rotation (d). The subsequent insertion of key 3 immediately off-
sets the balance criterion at the root node 5. Balance is thereafter re-estab-
lished by the more complicated LR double rotation; the outcome is tree (e).
The only candidate for loosing balance after a next insertion is node 5.
Indeed, insertion of node 6 must invoke the fourth case of rebalancing out-
lined in (4.63), the RL double rotation. The final tree is shown in Fig. 4.34(f).

procedure search(x: integer; var p: ref; var h: boolean);
var pl,p2: ref; {h = false}

begin
if p = nil then
begin {word is not in tree; insert it}

new(p); h := true;
with pT do
begin key := x; count := 1;
left := nil; right := nil; bal := 0
end
end else

if x < pl.key then
begin search(x, p1.left, h);
if /4 then {left branch has grown higher}
case pt.bal of (4.63)
1: begin pt.bal := 0; h := false
end ;
: ptbal 1= —1;
—1: begin {rebalance} pl := p1.left;
if p11.bal = —1 then
begin {single LL rotation}
pl.left := pll.right; pll.right := p;
pl.bal .= 0; p := pl
end else
begin {double LR rotation} p2 := plt.right;
plh.right := p21.left; p21.left := pl;
pl.left := p21.right; p21.right := p;

if p21.bal = —1 then p1.bal := 41 else pl.bal := 0;
if p21.bal = +1 then pl1.bal := —1 else pl1.bal := 0;
p = p2

end ;

SEC. 4.4 TREE STRUCTURES 221

ph.bal := 0; h := false
end
end
end else
if x > p?.key then
begin search(x, p?.right, h);
if A then {right branch has grown higher}
case p?.bal of
—1: begin pt.bal := 0; h := false
end ;
0: pt.bal := +1;
1: begin {rebalance} pl := p?t.right;
if p11.bal = +1 then
begin {single RR rotation}
pl.right := plt.left; plt.left := p;
pl.bal := 0; p := pl
end else
begin {double RL rotation} p2 := plt.left;
plt.deft .= p21.right; p27.right := pl;
pl.right .= p21.left; p2t.left := p;

if p21.bal = +1 then pt.bal := —1 else pl.bal := 0;
if p21.bal = —1 then pl1.bal := +1 else pl11.bal := 0;
p = p2
end ;
pl.bal := @; h := false
end
end
end
else
begin pt.count := pl.count + 1; h := false
end

end {search}

Two particularly interesting questions concerning the performance of the
balanced tree insertion algorithm are the following:

1. If all n! permutations of n keys occur with equal probability, what is
the expected height of the constructed balanced tree?
2. What is the probability that an insertion requires rebalancing?

Mathematical analysis of this complicated algorithm is still an open
problem. Empirical tests support the conjecture that the expected height

222 DYNAMIC INFORMATION STRUCTURES CHAP. 4

of the balanced tree generated by (4.63) is 2 = log (n) + ¢, where c is a small
constant (¢ = 0.25). This means that in practice the AVL-balanced tree
behaves as well as the perfectly balanced tree, although it is much simpler to
maintain. Empirical evidence also suggests that, on the average, rebalancing
is necessary once for approximately every two insertions. Here single and
double rotations are equally probable. The example of Fig. 4.34 has evidently
been carefully chosen to demonstrate as many rotations as possible in a
minimum number of insertions!

The complexity of the balancing operations suggests that balanced trees
should be used only if information retrievals are considerably more frequent
than insertions. This is particularly true because the nodes of such search
trees are usually implemented as densely packed recordsin order to economize
storage. The speed of access and of updating the balance factors—each requir-
ing two bits only—is therefore often a decisive factor to the efficiency of the
rebalancing operation. Empirical evaluations show that balanced trees lose
much of their appeal if tight record packing is mandatory. It is indeed
difficult to beat the straightforward, simple tree insertion algorithm!

4.4.8. Balanced Tree Deletion

Our experience with tree deletion suggests that in the case of balanced
trees deletion will also be more complicated than insertion. This is indeed
true, although the rebalancing operation remains essentially the same as
for insertion. In particular, rebalancing consists of either a single or a double
rotation of nodes.

The basis for balanced tree deletion is algorithm (4.52). The easy cases
are terminal nodes and nodes with only a single descendant. If the node
to be deleted has two subtrees, we will again replace it by the rightmost
node of its left subtree. As in the case of insertion (4.63), a Boolean variable
parameter /4 is added with the meaning “the height of the subtree has been
reduced.” Rebalancing has to be considered only when #4 is true. 4 is assigned
the value true upon finding and deleting a node or if rebalancing itself reduces
the height of a subtree. In (4.64) we introduce the two (symmetric) balancing
operations in the form of procedures since they have to be invoked from more
than one place in the deletion algorithm. Note that balancel is applied when
the left, balance2 after the right branch had been reduced in height.

The operation of the procedure is illustrated in Fig. 4.35. Given the
balanced tree (a), successive deletion of the nodes with keys 4, 8,6, 5,2, 1,
and 7 results in the trees (b). .. (h).

The deletion of key 4 is simple in itself since it represents a terminal node.
However, it results in an unbalanced node 3. Its rebalancing operation
involves an LL single rotation. Rebalancing becomes again necessary after
the deletion of node 6. This time the right subtree of the root (7) is rebalanced

® ©

(9) (h)

Fig. 4.35 Deletions in balanced tree.

by an RR single rotation. Deletion of node 2, although in itself straight-
forward since it has only a single descendant, calls for a complicated RL
double rotation. The fourth case, an LR double rotation, is finally invoked
after the removal of node 7, which at first was replaced by the rightmost
element of its left subtree, i.e., by the node with key 3.

procedure delete(x: integer; var p: ref; var h: boolean);

var q: ref; {th = false}
procedure balancel(var p: ref; var h: boolean);

var pl,p2: ref; b1,b2: —1..+1;
begin {h = true, left branch has become less high}

case pl.bal of (4.64)
—1: pt.bal := 0;

0: begin pl.bal := +1; h := false

end ;

224

DYNAMIC INFORMATION STRUCTURES

1:

begin {rebalance} pl := pt.right; bl := pl1.bal;
if b1 > 0 then
begin {single RR rotation}

pl.right := plt.left; plt.left := p;

if 61 = O then

begin pt.bal := +1; plt.bal := —1; h := false
end else

begin pt1.bal := 0; plT.bal := 0

end ;

p = pl

end else
begin {double RL rotation}

p2 1= plt.eft; b2 := p2%.bal;

plt.left := p2l.right; p2t.right := pl;

pl.right := p21.left; p21.left := p;

if b2 = 41 then pl.bal := —1 else pt.bal := 0;
if 52 = —1 then pl11.bal := +1 else plt.bal := 0;
p = p2; p2t.bal := 0

end

end

end
end {balance 1} ;

(4.64)

procedure balance2(var p: ref; var h: boolean);
var pl,p2: ref; b1,b2: —1..+41;

begin {h = true, right branch has become less high}
e pt.bal of

pl.bal := 0;

begin pl.bal := —1; h := false

1:

cas

end ;

begin {rebalance} pl := p1t.left; bl := pl?.bal;
if 561 < O then
begin {single LL rotation}

pl.left := plt.right; plt.right := p;
if b1 = O then

begin pt1.bal := —1; plt.bal := +1; h := false
end else

begin pt.bal := 0; plt.bal := 0

end ;

p = pl

end else

CHAP. 4

SEC. 4.4 TREE STRUCTURES 225

begin {double LR rotation}
p2 := plt.right; b2 := p21.bal,;

pll.right := p21.left; p21.left := pl;
pl.left .= p2t.right; p21.right := p;

if b2 = —1 then pt.bal := +1 else pt.bal := 0;
if b2 = +1 then plf.bal := —1 else pl1.bal := 0;
p = p2; p2t.bal := 0
end
end
end

end {balance?} ;

procedure del(var r: ref; var h: boolean);
begin {h = false}
if r1.right = nil then
begin del(r1.right, h); if h then balance2(r, h)
end else
begin q1.key := rt.key; ql.count := r{.count,;
ri= rtleft; h := true
end
end ;

begin {delete}
if p = nil then
begin writeln (‘KEY IS NOT IN TREE’); h := false (4.64)
end else
if x < p?.key then

begin delete(x, p?.left,h); if h then balancel(p,h)
end else
if x > pt.key then
begin delete(x, p?.right,h); if h then balance2(p, h)
end else
begin {delete pt} q := p;
if g7.right = nil then
begin p := ql.left; h := true
end else
if g7.left = nil then
begin p := qtl.right; h := true
end else
begin del(q1.left, h);
if A then balancel(p, h)
end ;
{dispose(q)}
end
end {delete}

226 DYNAMIC INFORMATION STRUCTURES CHAP. 4

Evidently, deletion of an element in a balanced tree can also be performed
with—in the worst case—O (log n) operations. An essential difference be-
tween the behavior of the insertion and deletion procedures must not be over-
looked, however. Whereas insertion of a single key may result in at most one
rotation (of two or three nodes), deletion may require a rotation at every
node along the search path. Consider, for instance, deletion of the rightmost
node of a Fibonacci-tree. In this case the deletion of any single node leads
to a reduction of the height of the tree; in addition, deletion of its rightmost
node requires the maximum number of rotations. This therefore represents
the worst choice of node in the worst case of a balanced tree, a rather unlucky
combination of chances! How probable are rotations, then, in general?
The surprising result of empirical tests is that whereas one rotation is invoked
for approximately every two insertions, one is required for every five deletions
only. Deletion in balanced trees is therefore about as easy—or as complicated
—as insertion.

4.4.9. Optimal Search Trees

So far our consideration of organizing search trees has been based on the
assumption that the frequency of access is equal for all nodes, that is, that all
keys are equally probable to occur as a search argument. This is probably the
best assumption if one has no idea of access distribution. However, there are
cases (they are the exception rather than the rule) in which information on
the probabilities of access to individual keys is available. These cases usually
have the characteristic that the keys always remain the same, i.e., the search
tree is subjected neither to insertions nor to deletions, but retains a constant
structure. A typical example is the scanner of a compiler which determines
for each word (identifier) whether or not it is a keyword (reserved word).
Statistical measurements over hundreds of compiled programs may in this
case yield accurate information on the relative frequencies of occurrence, and
thereby of access, of individual keys.

Assume that in a search tree the probability with which node i/ is accessed

is p;.
Pr{x =k} = p, z;l p=1 (4.65)

We now wish to organize the search tree in a way that the total number of
search steps—counted over sufficiently many trials—becomes minimal. For
this purpose the definition of path length (4.34) is modified by attributing a
certain weight to each node. Nodes which are frequently accessed become
heavy nodes; those which are rarely visited become light nodes. The (internal)
weighted path length is then the sum of all paths from the root to each node
weighted by that node’s probability of access.

P, = ;p,.h,- (4.66)

SEC. 4.4 TREE STRUCTURES 227

h, is the level of node i (or its distance from the root +1). The goal is now
to minimize the weighted path length for a given probability distribution.

As an example, consider the set of keys 1, 2, 3, with probabilities of access
p: = 1/7,p, =2/7, and p; = 4/7. These three keys can be arranged in five
different ways as search trees (see Fig. 4.36).

(a) (b) (c) (d) (e)

Fig. 4.36 Search trees with three nodes.
The weighted path lengths are computed according to (4.66) as
pp =L y2244n=1

pp=ta2+23 441
P:%UQ+LI+¢Q=¥
Pw:%{LL+}3+4QL=$

1 17
(e) . . . = —
=21 +2:24 4.3) =

Hence, in this example not the perfectly balanced but the degenerate tree (a)
turns out to be the optimal arrangement.

The example of the compiler scanner immediately suggests that this prob-
lem should be viewed under a slightly more general condition: Words occur-
ring in the source text are not always keywords; as a matter of fact, their
being keywords is rather the exception. Finding that a given word k is not
a key in the search tree can be considered as an access to a hypothetical
“special node” inserted between the next lower and next higher key (see
Fig. 4.19) with an associated external path length. If the probability g, of a
search argument x lying between the two keys k; and k;,, is also known,
this information may considerably change the structure of the optimal search
tree. Hence, we generalize the problem by also considering unsuccessful
searches.

The overall average weighted path length is now

P =3 phit 3 (4.67)

228 DYNAMIC INFORMATION STRUCTURES CHAP. 4

Fig. 4.37 Search tree with associated access frequencies.

where
2pit+ 249, =1
i=1 ji=0

and where 4, is the level of the (internal) node i/ and /] is the level of the exter-
nal node j. The average weighted path length may be called the “cost” of the
search tree since it represents a measure for the expected amount of effort
to be spent for searching. The search tree whose structure yields the minimal
cost among all trees with a given set of keys k; and probabilities p, and g,
is called the optimal tree.

For finding the optimal tree, there is no need to require that the p’s and
g’s sum up to 1. In fact, these probabilities are commonly determined by
experiments in which the accesses to nodes are counted. Instead of using the
probabilities p, and g;, we will subsequently use such frequency counts and
denote them by

a; = number of times the search argument x equals &,
b, = number of times the search argument x lies between k; and k.

By convention, b, is the number of times that x is less than k,, and b, is the
frequency of x being greater than k, (see Fig. 4.37). We will subsequently use
P to denote the cumulated weighted path length instead of the average path
length:

P= Z, ah, + zo b, (4.68)
i= i=

Thus, apart from avoiding the computation of the probabilities from mea-
sured frequency counts, we gain the further advantage of being able to use
integers only in our search for the optimal tree.

Considering the fact that the number of possible configurations of n
nodes grows exponentially with n, the task of finding the optimum seems

SEC. 4.4 TREE STRUCTURES 229

rather hopeless for large n. Optimal trees, however, have one significant prop-
erty that helps to find them: all their subtrees are optimal too. For instance,
if the tree in Fig. 4.37 is optimal for given a’s and b’s, then the subtree with
keys k; and k, is also optimal as shown. This property suggests an algorithm
that systematically finds larger and larger trees, starting with individual nodes
as smallest possible subtrees. The tree thus grows “from the leaves to the
root,” which is, since we are used to drawing trees upside-down, the “bot-
tom-up” direction [4-6].

The equation that is the key to this algorithm is (4.69). Let P be the
weighted path length of a tree, and let P, and P be those of the left and right
subtrees of its root. Clearly, P is the sum of P, and P, and the number of
times a search travels on the single leg to the root, which is simply the total
number W of search trials.

P=P,+ W+ Py (4.69)
W=§m+§m (4.70)

We call W the weight of the tree. Its average path length is then P/W.

These considerations show the need for a denotation of the weights and
the path lengths of any subtree consisting of a number of adjacent keys.
Let w,; denote the weight and let p,; denote the path length of the optimal
subtree T, consisting of nodes with keys k,,,, k.5, . . . , k;. These quantities
are defined by the recurrence relations (4.71) and (4.72)

wp = b; 0<i<n

) “4.7)
Wi =W ;-1 + a; + b O<i<j<n)
Du = Wy 0O<i<n) (4.72)

Dij = Wi + 13(‘2} (Pix-1 + Pip) O<i<j<n)

The last equation follows immediately from (4.69) and the definition of
optimality.

Since there are approximately (1/2)n? values p,;, and since (4.72) calls for
a choice among 0 <j— i <n cases, the minimization operation will
involve approximately (1/6)n* operations. Knuth pointed out that a factor n
can be saved by the following consideration, which alone saves this algorithm
for practical purposes.

Let r,; be a value of k which achieves the minimum in (4.72). It is possible
to limit the search for r;; to a much smaller interval, i.e., to reduce the number
of the j — i evaluation steps. The key is the observation that if we have found
the root r,; of the optimal subtree T;;, then neither extending the tree by
adding a node to the right nor removing its leftmost node ever can cause
the root to move to the left. This is expressed by the relation

Foj-t S F < Fixy,j 4.73)

230 DYNAMIC INFORMATION STRUCTURES CHAP. 4

which limits the search for possible solutions for r,; to the range r, ;...
riv1,; and it results in a total number of elementary steps to O(n2). We are
now ready to construct the optimization algorithm in detail. We recall the
following definitions which are based on optimal trees 7}, consisting of nodes
with keys k;,, ... k;.

. a;: the frequency of a search for k.

. b;: the frequency of a search argument x between k; and k, ;.
. w;;: the weight of T ;.

. p;;: the weighted path length of T;;.

. r;;: the index of the root of T;;.

wn WK -

Given
type index = 0..n
we declare the following arrays:
a: array[l .. n] of integer;
b: array[index] of integer;
p,w: array[index,index) of integer;
r: arrayl[index,index] of index

(4.74)

Assume that the weight w;; has been computed from @ and b in a straight-
forward way [see (4.71)]. Now consider w as the argument of the procedure
to be developed and consider r as its result, for r describes the structure com-
pletely. p may be considered an intermediate result. Starting out by consider-
ing the smallest possible subtrees, namely, those consisting of no nodes at
all, we proceed to larger and larger trees. Let us denote the width j — i of the
subtree T;; by h. Then we can trivially determine the values p,; for all trees
with 2 = 0 according to (4.72).

for i := 0 to n do p[i,i] := wl[i,i] (4.75)

In the case # = 1 we deal with trees consisting of a single node, which plainly
is also the root (Fig. 4.38).

h-1,) Fig. 4.38 Optimal tree with one node.

SEC. 4.4 TREE STRUCTURES 231

for i := 0 to n—1 do

begin j := i+1; pli,j] := pli,A+plj.j1; rlijl :=j (4.76)

end
Note that i denotes the left index limit and j the right index limit in the con-
sidered tree T;. For the cases # > 1 we use a repetitive statement with A
ranging from 2 to n, the case # = n spanning the entire tree T, ,. In each case
the minimal path length p,; and the associated root index r;; are determined
by a simple repetitive statement with an index k ranging over the interval
given by (4.73).

for h := 2 to n do

for i := 0 to n—h do

begin j := i+h;
“find m and min = minimum(p[i,m—1]+p[m,j]) for all (4.77)
m such that r[i,j—1] < m < rli+1,j]”;
pli,jl := min + wli,jl; rli,j] := m

end

The details of the refinement of the statement within quotes can be found
in Program 4.6. The average path length of T, , is now given by the quotient
Po../Wo., and its root is the node with index r ,,.

It is evident from algorithm (4.77) that the effort to determine the op-
timal structure is of the order O(n?); also, the amount of required storage
is O(n?). This is unacceptable if n is very large. Algorithms with greater effi-
ciency are therefore highly desirable. One of them is the algorithm developed
by Hu and Tucker [4-5] which requires only O(n) storage and O(n-logn)
computations. However, it considers only the case in which the key fre-
quencies are zero (a; = 0), i.e., where only the unsuccessful search trials are
registered. Another algorithm, also requiring O(n) storage elements and
O(n-log n) computations was described by Walker and Gotlieb [4-11]. Instead
of trying to find the optimum, this algorithm merely promises to yield a
nearly optimal tree. It can therefore be based on heuristic principles. The
basic idea is the following.

Consider the nodes (true and special nodes) being distributed on a linear
scale, weighted by their frequencies (or probabilities) of access. Then find the
node which is closest to the “center of gravity.” This node is called the cen-
troid, and its index is

(it 3500 (4.78)

rounded to the nearest integer. If all nodes have equal weight, then the root
of the desired optimal tree evidently coincides with the centroid, and—so
the reasoning goes—it will in most cases be in the close neighborhood of the
centroid. A limited search is then used to find the local optimum, whereafter

232 DYNAMIC INFORMATION STRUCTURES CHAP. 4

this procedure is applied to the resulting two subtrees. The likelihood of the
root lying very close to the centroid grows with the size n of the tree. As soon
as the subtrees have reached a “manageable” size, their optimum can be
determined by the above exact algorithm.

4.410. Displaying a Tree Structure

We now turn to the associated programming problem of how to generate
an output which displays the structure of the tree in a reasonably clear,
graphic form, given only the means of the ordinary printer. That is, we should
like to draw a picture of the tree, printing the keys as nodes and connecting
them with appropriate horizontal and vertical bar characters.

On a line printer whose data we represent as a textfile, i.e., as a sequence
of characters, we can proceed only in strict sequence from left to right and
from top to bottom. Hence, it seems to be a reasonable idea to first build a
representation of the tree that closely reflects its topological structure. The
second step then is to map this picture in orderly fashion onto the printed
page and to compute the precise coordinates of the nodes and arcs.

For the first task we can readily draw on our experience with tree gen-
erating algorithms and unhesitatingly we adopt a recursive solution to the
recursively defined problem. We formulate a function procedure called
tree similar to the one used in Program 4.3. The parameters i and j are the
limiting indices of the nodes belonging to the tree. Its root is then defined as
the node with index r;;. Before proceeding, however, we need to define the
type of the variables that are to represent the nodes. They must contain the
two pointers to their subtrees and the key of the node. For purposes to
be discussed in the second step, two additional fields, called pos and link,
are also incorporated. The chosen definitions are shown in (4.79) and the
resulting function procedure is listed in Program 4.6.

type ref = fnode;
node = record key: alfa;
pos: lineposition; 4.79)
left,right,link : ref
end

Note that this procedure counts the number of generated nodes by the
global counter variable k. The kth node is assigned the kth key, and as the
keys are alphabetically ordered, k multiplied by a constant scale factor yields
the horizontal coordinate of each key, a value which is immediately stored
along with the other information. Note also that we have departed from the
convention of using integers as keys, and we assume them to be of a type
alfa, standing for an array of characters of a given (maximum) length upon
which alphabetical ordering is defined.

SEC. 4.4 TREE STRUCTURES 233

To visualize what we have obtained so far, refer to Fig. 4.39. Given
the set of n keys and the computed matrix r,;, the statements
k := 0; vroot := tree(0,n)

will generate the preliminary linked tree structure with the node’s horizontal
positions recorded and their vertical position determined implicitly by their
level in the tree.

root\
PARIS

20
—————————— — nil
/,——0 l ~—
LONDON ZURICH
10 40
———)G - — — — — - —_ nil
nil | il ’//4 |
ROME
30
——————— —_ nil
nil [nil

Fig. 4.39 Tree resulting from Program 4.6.

We may now proceed to the second step: mapping the tree onto paper.
In this case, we must proceed strictly from the root level down, in each step
processing one row of nodes. But how do we access the nodes lying on a row ?
For this purpose, namely, linking together nodes on the same row, we have
previously introduced the record field called /ink. The chains to be established
are shown as dotted links in Fig. 4.39. In each processing step we assume the
presence of a chain linking the nodes to be printed—we call this chain current
chain—and during handling each node we identify its descendants (if any),
linking them into a second chain—which we call next chain. When proceed-
ing one level down, the next chain becomes the current chain, and the next
chain is marked empty.

The details of the algorithm may be taken from Program 4.6. The
following remarks may help to clarify some points:

1. The chains of nodes on a row are generated from left to right, resulting
in the leftmost node being last. Since the nodes are to be visited in the
same sequence, the list must be inverted. This inversion is performed
when the next list becomes the current list.

2. A printed line listing the keys—called master line—also contains the

*231) pasue[eq A[199j13d Ob'b *Sid

HLIM HVA 3dALl NIHL 1Lv3d3d AVHO0Hd 40 AOW Ni 0109 404 aN3 od AIQ 3SVO AVHHV

L s O P O
Ld Lo Lo Lo

’ 138 l l 3573 4

' 138v7

995°G = 3341 G3ONVIVE 40 HLONIT HLVd IDVHIAV

234

SEC. 4.4 TREE STRUCTURES 235

horizontal arcs (see Fig. 4.40). The variables ul, u2, u3, u4 denote the
beginning and end positions of the left and right horizontal arcs of a
node.

3. The construction of each master line is preceded by three lines for
marking the vertical parts of the arcs.

Let us now describe the structure of Program 4.6. Its two main com-
ponents are the procedures to find the optimal search tree, given a weight
distribution w, and to display a tree, given the indices r. The entire program

4 7 ARRAY
14 27 BEGIN
19 0 CASE
15 2 CONST
8 5 DIV
0 0 DOWNTO
0 20 DO
0 8 ELSE
0 28 END
1 0 FILE
0 12 FOR
0 2 FUNCTION
0 0 GOTO
9 13 IF
23 2 IN
208 0 LABEL
22 0 MOD
17 10 NIL
24 7 OF
17 2 PROCEDURE
0 1 PROGRAM
53 1 RECORD
6 8 REPEAT
16 0 SET
10 13 THEN
0 12 TO
6 2 TYPE
1 8 UNTIL
39 5 VAR
0 8 WHILE
0 0 WITH
37
549 203

Table 4.5 Keys and Frequencies of Occurrence

921 yoreas [ewndQo by ‘S

OP_OO O1lNMOC
IdAL 3HNA3004d NOILONNd 3714 7\>_D 3Svo

HLIM HVA _‘Oh 13S _!.._O aow _!mon_\— 3573 —szoo_ AVHYY

f.__:L ruIL ay0o3y 1N _|!ozm_47 ,’z_omm
_,.__Fz:‘_ 7rs_<moo~_n_l_ NI _ oa ;
||‘P<m&_x|_ _ _

,
_ ._m_ﬂﬁl_

09l = 3341 TVYNILdO 40 HLONIT H1Vd IDVHIAY

236

HLIM HVYA 3dAL

*AJuo skoy Surrapisuod 221 [ewndQo TH'p S

add0934d 3”NA3IO0Hd 138V

138

o) L

bl Lo L

L
ﬁ

><m00mn; TIN 7’2_ 0109

NOD
NOILONNd 3714 OLNMOd 7/w

I

di 7 ﬁOQ\v AVHYY

N3IHL

| I

aN3 7

ATNO SA3IM ONIYIAISNOD 3341 TVYIWILLO

237

238 DYNAMIC INFORMATION STRUCTURES CHAP. 4

is adapted to processing program texts, PASCAL programs in particular,
In the first part, such a program is read and its identifiers and keywords are
recognized, yielding the counts a; and b; for finding a keyword k; and iden-
tifiers between k; and &, ,. After printing the frequency statistics, the program
proceeds to compute the path length of the perfectly balanced tree, in passing
also determining the roots of its subtrees. Thereafter, the average weighted
path length is printed and the tree is displayed.

In the third part, procedure optiree is activated in order to compute the
optimal search tree; thereafter, it is also displayed. And, finally, the same
procedures are used to compute and display the optimal tree under considera-
tion of the key frequencies only.

Table 4.5 and Figs. 4.40 through 4.42 show the results generated by
Program 4.6 when applied to its own program text. The differences in the
three figures demonstrate that the balanced tree cannot even be considered
as nearly optimal and that the frequencies of the non-keys crucially influence
the choice of the optimal structure.

Program 4.6 Find Optimal Search Tree.

program optimaltree(input,output);
const n = 31; {no. of keys}
kin = 10; {max keylength}
type index = 0..n;
alfa = packed array [1 .. kin] of char;
var ch: char;
k1, k2: integer;
id: alfa; {identifier or key}
buf: array [1 .. kiln] of char; {character buffer}
key: array [1..n] of alfa;
i,j,k: integer,
a: array [1..n] of integer;
b: array [index] of integer;
p,w: array [index,index] of integer;
r: array [index,index] of index;
suma, sumb: integer;
function baltree(i,j: index): integer;
var k: integer;
begin k := (i+j+1) div 2; r[i,j] := k;
if i > j then baltree := blk] else
baltree := baltree(i,k—1) + baltree(k,j) + wli,J]
end {baltree} ;
procedure opttree;
var x, min: integer;
i,j,k,h,m: index;

SEC. 4.4 TREE STRUCTURES 239

begin {argument: w, result: p,r}
for i := 0 to n do p[i,i] := wl[i,il; {width of tree h = 0}

for i := 0 to n—1 do {width of tree h = 1}
begin j := i+1;

plijl := plisil + pljjl; rlijli=j
end ;
for h := 2 to n do { h = width of considered tree }
for i := 0 to n—h do { i = left index of considered tree }
begin j := i+h; { J = right index of considered tree }

m := rli,j—1]; min := plim—1] + p[m,jl;
for k := m+-1 to r[i+1,j] do
begin x := pli,k—1] + plk,jl;

if x < min then

begin m := k; min := x
end
end ;
plisjl := min + wli,jl; rli,j]1:= m
end

end {opttree} ;

procedure printtree;
const /w = 120; {line width of printer}
type ref = tnode;
lineposition = 0. . lw;
node = record key: alfa;
pos: lineposition;
left, right, link: ref
end ;
var root, current, next: ref;
9,91,q2: ref;
i, k: integer;
u, ul, u2, u3, ud: lineposition;
function tree(i,j: index): ref;
var p: ref;
begin if i = j then p := nil else
begin new(p);
pl.left := tree(i, rli,j]—1);
pl.pos := trunc((lw—kin)xk|/(n—1)) + (kin div 2); k := k+1;
plkey := keylrli,jll;
pl.right 1= tree(rli,jl, j)
end ;
tree := p
end ;
Program 4.6 (Continued)

begin k := 0; root := tree(0,n);
current := root; root?.link := nil;
next := nil;
while current == nil do
begin {proceed down; first write vertical lines}
for i := 1 to 3 do
begin v := 0; q := current,
repeat ul := g1.pos;
repeat write(" '); u 1= u+1
until u = ul;
write("|"); u := u+1; q := q?.link
until ¢ = nil;
writeln
end ;
{now print master line; descending from nodes on current list
collect their descendants and form next list}
q := current; u := 0;
repeat unpack(qt.key, buf, 1);
{center key about pos} i := kin;
while buffi] = ' 'do i:= i—1;
u2 1= qt.pos — ((i—1) div 2); u3 := u2-+i,;
ql := qt.left; q2 := q7.right;
if g1 = nil then ul := u2 else
begin vl := ql7.pos; ql1.link := next; next := ql
end ;
if g2 = nil then u4 := u3 else
begin u4 := g27.pos-+1; q21.link := next; next := g2
end ;
i:= 0;
while ¥ < w1 do begin write(" '); u := u-+1 end ;
while © < u2 do begin write('—'); u := u+1 end ;
while u < u3 do begin i := i+ 1; write(buf[i]); u := u+1 end ;
while u < u4 do begin write('—'); u := u-+1 end ;

q = qt.link
until g = nil;
writeln;
{now invert next list and make it current list}
current := nil;

while next = nil do
begin q := next; next := q1.link;
ql.link 1= current; current := q
end
end
end {printtree} ;

Program 4.6 (Continued)

240

begin {initialize table of keys and counters}
key[1] := 'ARRAY’; key[2] := 'BEGIN';
key[3] := rcask; key[4] := 'consT;

key[5] := 'pDiv; key[6] := '‘DOWNTO’;
key[7] := 'p0o’; key[8] := 'ELSFE’;
key[9] := 'END’; key[10] := 'FILE';
key[11] := 'FOR’; key[12] := 'FUNCTION';
key[13] := 'GoT0’; key[14] := "IF;
key[15] := "IN’; key[16] := 'LABEL';
key[17] := 'moD’; key[18] := 'NIL';
key[19] := roF; key[20] := 'PROCEDURE';
key[21] := 'PROGRAM’; key[22] := 'RECORD';
key[23] := ‘REPEAT'; key[24] := 'SET’;
key[25] := 'THEN'; key[26] := 'TO’;
key[27] := "TYPE; key[28] := 'UNTIL';
key[29] := 'vAR’; key[30] := 'WHILE’;
key[31] := wiTH’;
for i := 1 to n do

begin afi] := 0; b[i] := 0

end ;

b[0] := 0; k2 := kin;
{scan input text and determine a and b}
while —eof (input) do
begin read(ch);
if ch in ['A’..’Z'] then
begin {identifier or key} k1 := 0;
repeat if k1 < kin then
begin k1 := kl1+1; buflkl] := ch
end ;
read(ch)
until —ch in ['A’..’Z', '0"..'9]);
if k1 > k2 then k2 := kl else
repeat buf[k2] := ' '; k2 := k2—1
until k2 = kl;
pack(buf,1,id);
i:=1;j:= n;
repeat k := (i+j) div 2;
if key[k] < id then i := k+1;
if key[k] > id then j := k—1;
wmtil i > j;
if key[k] = id then alk] := a[k] + 1 else
begin k := (i+j) div 2; b[k] := blk]+1
end
end else

Program 4.6 (Continued)

241

242 DYNAMIC INFORMATION STRUCTURES CHAP. 4

if ch = """ then

repeat read(ch) until ch = """ else
if ch = '{’ then
repeat read(ch) wntil ch = '}
end ;
writeln (‘KEYS AND FREQUENCIES OF OCCURRENCE:);
suma := 0; sumb := b[0];
for i :=1to n do
begin suma := suma+-ali]; sumb := sumb+bli];
writeln(bli—1], ali], ' ', key[i])
end ;
writeln(b[n]);
writeln(’);

writeln(sumb, sumay;

{compute w from a and b}

for i := 0 to n do

begin w[i,i] := b[i];

for j := i+1 to n do wli,j] := wli,j—1] + a[j] + b[j]

end ;

write('AVERAGE PATH LENGTH OF BALANCED TREE= ‘);

writeln(baltree(0,n)/w[0,n]:6:3); printtree;

opttree;

write('AVERAGE PATH LENGTH OF OPTIMAL TREE= ’);

writeln(p[0,n]/w[0,n]:6:3); printtree;

{now consider keys cnly, setting b = 0}

for i := 0 to n do

begin w[ii] := 0;

for j := i+1 to n do w[i,j] := w[i,j—1] + a[j]

end ;
opttree;
writeln("OPTIMAL TREE CONSIDERING KEYS ONLY');
printtree

end

Program 4.6 (Continued)

4.5. MULTIWAY TREES

So far, we have restricted our discussion to trees in which every node
has at most two descendants, i.e., to binary trees. This is entirely satisfactory
if, for instance, we wish to represent family relationship with a preference to
the “pedigree view,” in which every person is associated with his parents.

SEC. 4.5 MULTIWAY TREES 243

After all, no one has more than two parents! But what about someone who
prefers the “posterity view”? He has to cope with the fact that some people
have more than two children, and his trees will contain nodes with many
branches. For lack of a better term, we shall call them multiway trees.

Of course, there is nothing special about such structures, and we have
already encountered all the programming and data definition facilities to
cope with such situations. If, for instance, an absolute upper limit on the
number of children is given (which is admittedly a somewhat futuristic
assumption), then one may represent the children as an array component of
the record representing a person. If the number of children varies strongly
among different persons, however, this may result in a poor utilization of
available storage. In this case it will be much more appropriate to arrange the
offspring as a linear list, with a pointer to the youngest (or eldest) offspring
assigned to the parent. A possible type definition for this case is (4.80) and
a possible data structure is shown in Fig. 4.43.

type person = record name: alfa;
sibling: 1 person; (4.80)
offspring: 1 person
end

We now realize that by tilting this picture 45° it will look like a perfect
binary tree. But this view is misleading because functionally the two references
have entirely different meanings. One usually doesn’t treat a sibling as an
offspring and get away unpunished, and hence one should not do so even in
constructing data definitions. This example could also be easily extended into
an even more complicated data structure by introducing more components
in each person’s record, thus being able to represent further family relation-
ships. A likely candidate which cannot generally be derived from the sibling
and offspring references is that of husband and wife, or even the inverse
relationship of father and mother. Such a structure quickly grows into a
complex “relational data bank,” and it may be possible to map several trees
into it. The algorithms operating on such structures are intimately tied to
their data definitions, and it does not make sense to specify any general rules
or widely applicable techniques.

However, there is a very practical area of application of multiway trees
which is of general interest. This is the construction and maintenance of
large-scale search trees in which insertions and deletions are necessary, but
in which the primary store of a computer is not large enough or is too costly
to be used for long-time storage.

Assume, then, that the nodes of a tree are to be stored on a secondary
storage medium such as a disk store. Dynamic data structures introduced in
this chapter are particularly suitable for incorporation of secondary storage

394039

901 Aemnnw v - €p'p 81

V13NVd 1Nvd
[} L
VNIL SIHHD 104VD 143804 AHVIN 14391V
1
d4313d NHOr

244

SEC. 4.5 MULTIWAY TREES 245

media. The principal innovation is merely that pointers are represented by
disk store addresses instead of main store addresses. Using a binary tree for
a data set of, say, a million items, requires on the average approximately
log, 10% = 20 search steps. Since each step now involves a disk access (with
inherent latency time), a storage organization using fewer accesses will be
highly desirable. The multiway tree is a perfect solution to this problem.
If an item located on a secondary store is accessed, an entire group of items
may also be accessed without much additional cost. This suggests that a
tree be subdivided into subtrees and that the subtrees are represented as
units which are accessed all together. We shall call these subtrees pages.
Figure 4.44 shows a binary tree subdivided into pages, each page consisting
of 7 nodes.

e i
[O i
| |
i O O :
] I
i Q Q O Q :
A N / U N __ LN
T - —
r o T a | Q IR : ® i e [o !
| ' ! [! i i I [
{ o O : d3 Qg ol Ol ¢ Qi1 Q0 Q : e O : o O {
| | | | 1 | | |
| | ! 1
ooooooo..oooo.ooooooooooooooooo'
L { I S, e _J

Fig. 4.44 A binary tree subdivided into “pages.”

The savings in the number of disk accesses—each page access now involves
a disk access—can be considerable. Assume that we choose to place 100
nodes on a page (this is a reasonable figure); then the million item search
tree will on the average require only log,,, 10¢ = 3 page accesses instead of
20. But, of course, if the tree is left to grow “at random,” then the worst case
may still be as large as 104! It is plain that a schema for controlled growth is
almost mandatory in the case of multiway trees.

4.5.1. B-Trees

If one is looking for a controlled growth criterion, the one requiring
a perfect balance is quickly eliminated because it involves too much balancing
overhead. The rules must clearly be somewhat relaxed. A very sensible cri-
terion was postulated by R. Bayer [4.2] in 1970: every page (except one)
contains between »n and 21 nodes for a given constant n. Hence, in a tree with
N items and a maximum page size of 2n nodes per page, the worst case
requires log, N page accesses—and page accesses clearly dominate the entire

246 DYNAMIC INFORMATION STRUCTURES CHAP. 4

search effort. Moreover, the important factor of store utilization is at least
509, since pages are always at least half full. With all these advantages, the
schema involves comparatively simple algorithms for search, insertion, and
deletion. We will subsequently study them in detail.

The underlying data structures are called B-trees and have the following
characteristics; # is said to be the order of the B-tree.

Every page contains at most 2# items (keys.)

. Every page, except the root page, contains at least n items.

3. Every page is either a leaf page, i.e., has no descendants or it has m + 1
descendants, where m is its number of keys.

4. All leaf pages appear at the same level.

N —

Figure 4.45 shows a B-tree of order 2 with 3 levels. All pages contain 2, 3,

[2 5 7 8|[13141518] [2224]| [262728 | [323538 | [4142 4546

Fig. 4.45 B-tree of order 2.

or 4 items; the exception is the root which is allowed to contain a single item
only. All leaf pages appear at level 3. The keys appear in increasing order
from left to right if the B-tree is squeezed into a single level by inserting the
descendants in between the keys of their ancestor page. This arrangement
represents a natural extension of the organization of binary search trees,
and it determines the method of searching an item with given key. Consider
a page of the form shown in Fig. 4.46 and a given search argument x.
Assuming that the page has been moved into the primary store, we may use
conventional search methods among the keys k, . .. k,. If m is cufficiently

l

Po ki Py ky Py ... Pm-1 kmpmJ
oo oo

Fig. 4.46 B-tree page with m keys.

SEC. 4.5 MULTIWAY TREES 247

large, one may use binary search; if it is rather small, an ordinary sequential
search will do. (Note that the time required for a search in main store is
probably negligible compared to the time it takes to move the page from
secondary into primary store.) If the search is unsuccessful, we are in one of
the following situations:

1. k; < x < k;,, for 1 < i < m. We continue the search on page p;!
2. k,, < x. The search continues on page p,.1.
3. x < k,. The search continues on page p,7.

If in some case the designated pointer is nil, i.e., if there is no descendant page,
then there is no item with key x in the whole tree, and the search is terminated.

Surprisingly, insertion in a B-tree is comparatively simple too. If an item
is to be inserted in a page with m << 2n items, the insertion process remains
constrained to that page. It is only insertion into an already full page that has
consequences upon the tree structure and may cause the allocation of new
pages. To understand what happens in this case, refer to Fig. 4.47, which
illustrates the insertion of key 22 in a B-tree of order 2. It proceeds in the
following steps:

1. Key 22 is found to be missing; insertion in page C is impossible because
C is already full.

2. Page C is split into two pages (i.e., a new page D is allocated).

3. The m + 1 keys are equally distributed onto C and D, and the middle
key is moved up one level into the ancestor page A.

A A [70%0

[7 101518][26303540] [7 1015 18][2226 | [3540 |
B c B c)

Fig. 4.47 Insertion of key 22 in B-tree.

This very elegant scheme preserves all the characteristic properties of
B-trees. In particular, the split pages contain exactly n items. Of course, the
insertion of an item in the ancestor page may again cause that page to over-
flow, thereby causing the splitting to propagate. In the extreme case it may
propagate up to the root. This is, in fact, the only way that the B-tree may
increase its height. The B-tree has thus a strange habit of growing: it grows
from its leaves upward to the root.

248 DYNAMIC INFORMATION STRUCTURES CHAP. 4

We shall now develop a detailed program from these sketchy descriptions.
It is already apparent that a recursive formulation will be most convenient
because of the property of the splitting process to propagate back along the
search path. The general structure of the program will therefore be similar
to balanced tree insertion, although the details are different.

First of all, a definition of the page structure has to be formulated. We
choose to represent the items in the form of an array.

type page = record m: index;

pO: ref;
e: array[l . . nn] of item (4.81)
end
where
const nn = 2xn;
type ref = 1page;
index = 0. .nn
and
type item = record key: integer; (4.82)
p: ref;
count: integer
end

Again, the item component count stands for all kinds of other information
that may be associated with each item, but it plays no role in the actual search
process. Note that each page offers space for 2n items. The field m indicates
how many item locations are actually used. As m > n (except for the root
page), a storage utilization of at least 509 is guaranteed.

The algorithm of B-tree search and insertion is part of Program 4.7,
formulated as a procedure called search. Its main structure is straight-
forward, reminding one of the simple binary tree search, with the exception
that the branching decision is not a binary choice. Instead, the “in-page
search” is represented as a binary search upon the array e.

The insertion algorithm is formulated as a separate procedure merely
for clarity. It is activated after search has indicated that an item is to be passed
up on the tree (in the direction toward the root). This fact is indicated by the
Boolean result parameter /; it assumes a similar role as in the algorithm for
balanced tree insertion, where 4 indicates that the subtree had grown. If 4 is
true, the second result parameter, u, represents the item being passed up.
Note that insertions start in hypothetical pages, namely, the “special nodes”
of Fig. 4.19; the new item is immediately handed up via the parameter u
to the leaf page for true insertion. The scheme is sketched in (4.83).

SEC. 4.5 MULTIWAY TREES 249

procedure search(x: integer; a: ref;, var h: boolean; var u: item);
begin if @ = nil then
begin {x is not in tree}
Assign x to item u, set h to true, indicating that an
item u is passed up in the tree
end else
with a7 do
begin {search x on page at}
binary array search;
if found then (4.83)
increment the relevant item’s occurrence count else
begin search(x, descendant, h, u);
if & then {an item u is being passed up}
if (no. items on al) < 2n then
insert u on page a?l and set h to false
else split page and pass middle item up
end
end
end

If the parameter 4 is true after the call of search in the main program, a
split of the root page is indicated. Since the root page plays an exceptional
role, this process has to be programmed separately. It consists merely of the
allocation of a new (root) page and the insertion of the single item given by
the parameter u. As a consequence, the new root page contains a single item
only. The details can be gathered from Program 4.7.

Figure 4.48 shows the result of using Program 4.7 to construct a B-tree
with the following insertion sequence of keys:

20; 40 10 30 15; 35 7 26 18 22; 5; 42 13 46
27 8 32; 38 24 45 25;

The semicolons designate the positions of the “snapshots” taken upon each
page allocation. Insertion of the last key causes two splits and the allocation
of three new pages.

Note the special significance of the with clause in this program. It is
already evident in the sketch (4.83). In the first place it indicates that identi-
fiers of page components automatically refer to page al within the statement
prefixed by the clause. If, in fact, the pages are allocated on secondary store—
as would certainly be necessary in a large data bank system—then the with
clause may in addition be interpreted as implying the transfer of the desig-
nated page into primary store. Since each activation of search therefore
implies one page allocation in main store, k = log, N recursive calls are neces-

250 DYNAMIC INFORMATION STRUCTURES CHAP. 4

ta
(b)

10 15| [30 40 |
(c) 20 30

[7101518] [22 26] [35 40 |

(d) 10 20 30

[5 7][5 18] [22 26] [[35 40]

e) 10 20 30 40

[5 7 8] [131518] [2226 27] [32 35 | | 42 46 |

()
10
/// \\\
[7 8][13 15 18] 22 24 26 27 |[32 35 38|42 45 46|

Fig. 4.48 Growth of a B-tree of order 2.

sary at most. Hence, if the tree contains N items, we must be capable of
accommodating k pages in main store. This is one limiting factor on the page
size 2n. In fact, we need to accommodate even more than k pages, for inser-
tion may cause page splitting. A corollary is that the root page is best allocated
permanently in the primary store because each query proceeds necessarily
from the root page.

Another positive quality of the B-tree organization is its suitability and
economy in the case of purely sequential updating of the entire data bank.
Every page is fetched into primary store exactly once.

Deletion of items from a B-tree is fairly straightforward in principle, but
it is complicated in the details. We may distinguish two different circum-

SEC. 4.5 MULTIWAY TREES 251

stances:

1. The item to be deleted is on a leaf page; here its removal algorithm is
plain and simple.

2. The item is not on a leaf page; it must be replaced by one of the two
lexicographically adjacent items, which happen to be on leaf pages and
can easily be deleted.

In case 2 finding the adjacent key is analogous to finding the one used in
binary tree deletion. We descend along the rightmost pointers down to the
leaf page P, replace the item to be deleted by the rightmost item on P, and
then reduce the size of P by 1.

In any case, reduction of size must be followed by a check of the number
of items m on the reduced page. For if m < n, the primary characteristic of
B-trees would be violated. Some additional action has to be taken; this
underflow condition is indicated by the Boolean variable parameter A.

The only recourse is to borrow, or to “annect,” an item from one of the
neighboring pages. Since this involves fetching page Q into main store—a
relatively costly operation—one is tempted to make the best of this unde-
sirable situation and to annect more than a single item at once. The usual
strategy is to distribute the items on pages P and Q evenly on both pages.
This is called balancing.

Of course, it may happen that there is no item left to be annected since Q
has already reached its minimal size n. In this case the total number of items
on pages P and Q is 2n — 1; we may merge the two pages into one, adding the
middle item from the ancestor page of P and Q, and then entirely dispose of
page Q. This is exactly the inverse process of page splitting. The process may
be visualized by considering the deletion of key 22 in Fig. 4.47.

Once again, the removal of the middle key in the ancestor page may
cause its size to drop below the permissible limit #, thereby requiring that
further special action (either balancing or merging) be undertaken at the
next level. In the extreme case the page merging may propagate all the way
up to the root. If the root is reduced to size 0, it is itself deleted, thereby
causing a reduction in the height of the B-tree. It is, in fact, the only way that
a B-tree may shrink in height.

Figure 4.49 shows the gradual decay of the B-tree of Fig. 4.48 upon the
sequential deletion of the keys

25 45 24; 38 32; 8 27 46 13 42; 5 22 18 26; 7 35 15;

The semicolons again designate the places where the “snapshots” are taken,
namely, where pages are being disposed. The deletion algorithm is included
as a procedure in Program 4.7. The similarity of its structure to that of
balanced tree deletion is particularly noteworthy.

131518 (2224 | [2627] [323538] [424546]

(b) 10223040
L
(5 7 8 [[13151820] [2627 | [323538 | [4246]
(c) 102230

(5 7 8][13151820] [2627] [35404246]

(710] [20303540]

o

Fig. 4.49 Decay of a B-tree of order 2.

Program 4.7 B-Tree Search, Insertion, and Deletion.

program Btree(input,output);
{B-tree search, insertion and deletion}
const n = 2; nn = 4; {page size}
type ref = 1page;
item = record key: integer;
p: ref;
count: integer;
end ;
page = record m: O..nn; {no. of items}
pO: ref;
e: array [l .. nn] of item;
end ;
var root, q: ref; x: integer;
h: boolean; u: item;

SEC. 4.5 MULTIWAY TREES

procedure search(x: integer; a: ref; var h: boolean; var v: item);
{Search key x on B-tree with root a; if found, increment counter.
otherwise insert an item with key x and count 1 in tree. If an item
emerges to be passed to a lower level, then assign it to v;
h 1= “tree a has become higher”}
var k,lr: integer; q: ref;, u: item;
procedure insert;
var i: integer; b: ref;
begin {insert u to the right of at.e[r]}
with a7 do
begin if m < nn then
begin m := m+1; h := false;
for i := m downto r+2 do ¢[i] := e[i—1];
efr+1] := u
end else
begin {page a? is full; split it and assign the emerging
item to v} new(b);
if r < n then

begin if r = n then v := u else
begin v := ¢[n];
for i := n downto r+2 do ¢[i] := e[i—1];
efr+1] := u
end ;
for i := 1 to n do b1.e[i] := al.e[i+n]
end else

begin {insert u in right page} r := r—n; v := e[n+1]

for i := 1 to r—1 do bt1.e[i] := af.eli+n+1];
bl.elr] := u;
for i := r+1 to n do bt.eli] := aft.eli+n]
end ;
m:= n; bt.m := n; b1.p0 := v .p; v .p:=b
end
end {with}
end {insert} ;
begin {search key x on page al; h = false}
if @ = nil then
begin {item with key x is not in tree} h := true;
with v do
begin key := x; count := 1; p := nil
end
end else

Program 4.7 (Continued)

253

with af do
begin [:= 1; r := m; {binary array search}
repeat k := (/4r) div 2;
if x < e[k] .key then r := k—1;
if x > e[k] .key then [:= k-1;
until r < /;
if /—r > 1 then
begin { found} elk] .count := e[k] .count + 1; h := false
end else
begin {item is not on this page}
if r = 0 then g := p0 else g := ¢[r] .p;
search(x,q,h,u); if h then insert
end
end
end {search} ;

procedure delete(x: integer; a: ref;, var h: boolean);
{search and delete key x in b-tree a; if a page underflow is
necessary, balance with adjacent page if possible, otherwise merge;
h := “page a is undersize”}
var ik, r: integer; q: ref;
procedure underflow(c,a: ref; s: integer; var h: boolean);
{a = underflow page, ¢ = ancestor page}
var b: ref;, i,k,mb,mc: integer;
begin mc := ct.m; {h = true, at.m = n—1}
if s < mc then
begin {b := page to the right of a} s := s-+1;
b = ct.els].p; mb := bt.m; k := (mb—n+1) div 2;
{k = no. of items available on adjacent page b}
at.eln] := ct.e[s]; at.eln] .p := bt.p0;
if £ > 0 then
begin {move k items from b to a}
for i == 1 to k—1 do at.eli+n] := bt.eil;
ct.els] := bt.elk]; ct.els] .p := b;
b1.p0 := bl.elk] .p; mb := mb—k;
for i := 1 to mb do bt.eli] := bl.eli+k];
bt.m := mb; at.m := n—1+4k; h := false
end else
begin {merge pages a and b}
for i := 1 to n do at.e[i+n] := b1.e[i];
for i := 5 to mc—1 do ct.efi] := ct.eli+1];
at.m := nn; ct.m := mc—1; {dispose(b)}
end
end else

Program 4.7 (Continued)

254

SEC. 4.5 MULTIWAY TREES 255

begin {b := page to the left of a}
if s = 1 then b := ¢1.p0 else b := ct.e[s—1] .p;
mb := bt.m + 1; k := (mb—n) div 2;
if £ > 0 then
begin {move k items from page b to a}
for i := n—1 downto 1 do at.e[i+k] := af.eli];
at.ek] := ct.els]; at.elk] .p := at.p0; mb := mb—k;
for i := k—1 downto 1 do af.e[i]l:= b1.e[li+mb];
al.p0 := bt.e[mb] .p;
ct.e[s] := bt.elmb]; ct.els] .p := a;
bt.m := mb—1; at.m := n—1+k; h := false
end else
begin {merge pages a and b}
bl.elmb] := ct.e[s]; bt.elmb] .p := at.p0;
for i := 1 to n—1 do bt.e[li+mb} := a?.elil;
bt.m := nn; ct.m := mc—1; {dispose(a)}
end
end
end {underflow} ;

procedure del(p: ref; var h: boolean);
var q: ref, {global a,k}
begin
with p1 do
begin g := e[m] .p;
if g % nil then
begin del(q,h); if h then underflow(p,q,m,h)

end else
begin pt.e[m] .p := at.elk] .p; at.elk] := pt.e[m];
m:= m—1; h:= m<n
end
end
end {del} ;

begin {delete}
if a = nil then

begin writeln (‘KEY IS NOT IN TREE'); h := false
end else

Program 4.7 (Continued)

with a1 do
begin [:= 1; r := m; {binary array search}
repeat k := (/4+r) div 2;
if x << e[k] .key then r := k—1;
if x > e[k] .key then | := k+1;
until / > r;
if ¥=0 then g := p0 else ¢ := ¢[r] .p;
if [—r > 1 then
begin { found, now delete elk]}
if ¢ = nil then
begin {a is a terminal page} m := m—1; h := m<n;
fori := k to m do ¢[i] := e[i+1];
end else
begin del(q,h); if h then underflow(a,q,r,h)
end
end else
begin delete(x,q,h); if h then underflow(a,q,r,h)
end
end
end {delete} ;

procedure printtree(p: ref; I integer);
var i: integer;
begin if p = nil then

with p? do
begin for / := 1 to [do write(’ Y
for i := 1 to m do write(e[i].key: 4);
writeln;
printtree(p0,l4-1);
for i := 1 to m do printtree(eli] .p, I+1)
end
end ;
begin root := nil; read(x);

while x = 0 do
begin writeln('SEARCH KEY’, X);
search(x,root,hu);
if & then
begin {insert new base page} q := root; new(root);
with root? do
begin m := 1; p0 := q; ¢[1] := u
end
end ;
printtree(root,1); read(x)
end ;

Program 4.7 (Continued)

256

SEC. 4.5 MULTIWAY TREES 257

read(x);
while x = 0 do
begin writeln('DELETE KEY’, X);
delete(x,root,h);
if A then
begin {base page size was reduced}
if roott.m = 0 then
begin g := root; root := q?1.p0; {dispose(q)}
end
end ;
printtree(root,1); read(x)
end
end .

Program 4.7 (Continued)

Extensive analysis of B-tree performance has been undertaken and is
reported in the referenced article (Bayer and McCreight). In particular,
it includes a treatment of the question of optimal page size n, which strongly
depends on the characteristics of the storage and computing system available.

Variations of the B-tree scheme are discussed in Knuth, Vol. 3, pp. 476—
479. The one notable observation is that page splitting should be delayed
in the same way that page merging is delayed, by first attempting to balance
neighboring pages. Apart from this, the suggested improvements seem to
yield marginal gains.

4.5.2. Binary B-Trees

The species of B-trees which seem to be least interesting are the first-
order B-trees (n = 1). But sometimes it is worthwhile to pay attention even
to these cases. It is plain, however, that first-order B-trees are not useful in
representing large, ordered, indexed data sets involving secondary stores;
approximately 50%; of all pages will contain a single item only. Therefore,
we shall forget secondary stores and again consider the problem of search
trees involving a one-level store only.

A binary B-tree (BB-tree) consists of nodes (pages) with either one or
two items. Hence, a page contains either two or three pointers to descendants;
this suggested the term 2-3 tree. According to the definition of B-trees, all
leaf pages appear at the same level, and all non-leaf pages of BB-trees have
either two or three descendants (including the root). Since we now are dealing
with primary store only, an optimal economy of storage space is mandatory,
and the representation of the items inside a node in the form of an array
appears unsuitable. An alternative is the dynamic, linked allocation; that is,
inside each node there exists a linked list of items of length 1 or 2. Since each

258 DYNAMIC INFORMATION STRUCTURES CHAP. 4

A
©9 PR

a b ¢

14
o

Fig. 450 Representation of BB-tree nodes.

node has at most three descendants and thus needs to harbor only up to three
pointers, one is tempted to combine the pointers for descendants and pointers
in the item list as shown in Fig. 4.50. The B-tree node thereby loses its actual
identity, and the items assume the role of nodes in a regular binary tree. It
remains necessary, however, to distinguish between pointers to descendants
(vertical) and pointers to “siblings” on the same page (horizontal). Since only
the pointers to the right may be horizontal, a single bit is sufficient to record
this distinction. We therefore introduce the Boolean field /# with the meaning
“horizontal.” The definition of a tree node based on this representation is
given in (4.84). It was suggested and investigated by R. Bayer [4-3] in 1971
and represents a search tree organization guaranteeing a maximum path
length p = 2-[log N7.

type node = record key: integer;
left,right: ref, (4.84)
h: boolean
end

Considering the problem of key insertion, one must distinguish four
possible situations that arise from a growth of the left or right subtrees.
The four cases are illustrated in Fig. 4.51. Remember that B-trees have
the characteristic of growing from the bottom toward the root and that the
property of all leafs being at the same level must be maintained.

The simplest case (1) is when the right subtree of a node A grows and
when A is the only key on its (hypothetical) page. Then, the descendant B
merely becomes the sibling of A, i.e., the vertical pointer becomes a horizontal
pointer. This simple “raising” of the right arm is not possible if A already has
a sibling. Then we obtain a page with 3 nodes, and we have to split it (case 2).
Its middle node B is passed up to the next higher level.

Now assume that the Jeft subtree of a node B has grown in height. If B
is again alone on a page (case 3), i.e., its right pointer refers to a descendant,

SEC. 4.5 MULTIWAY TREES 259

@ @ ;9\‘ /@\

Fig. 4.51 Node insertion in BB-tree.

then the left subtree (A) is allowed to become B’s sibling. (A simple rotation
of pointers is necessary since the left pointer cannot be horizontal.) If, how-
ever, B already has a sibling, the raising of A yields a page with three mem-
bers, requiring a split. This split is realized in a very straightforward manner:
C becomes a descendant of B, which is raised to the next higher level (case 4).

It should be noted that upon searching a key, it makes no effective differ-
ence whether we proceed along a horizontal or a vertical pointer. It therefore

260 DYNAMIC INFORMATION STRUCTURES CHAP. 4

appears artificial to worry about a left pointer in case 3 becoming horizontal,
although its page still contains not more than two members. Indeed, the
insertion algorithm reveals a strange asymmetry in handling the growth of
left and right subtrees, and it lets the BB-tree organization appear rather
artificial. There is no “proof” of strangeness of this organization; yet a
healthy intuition tells us that something is “fishy” and that we should remove
this asymmetry. It leads to the notion of the symmetric binary B-tree(SBB-tree)
which was also investigated by Bayer [4-4] in 1972. On the average it leads
to slightly more efficient search trees, but the algorithms for insertion and
deletion are also slightly more complex. Moreover, each node now requires
two bits (Boolean variables / and rh) to indicate the nature of its two pointers.

Since we will restrict our detail considerations to the problem of insertion,
we have once again to distinguish among four cases of grown subtrees. They
are illustrated in Fig. 4.52, which makes the gained symmetry evident. Note
that whenever a subtree of node A without siblings grows, the root of the sub-
tree becomes the sibling of A. This case need not be considered any further.

The four cases considered in Fig. 4.52 all reflect the occurrence of a
page overflow and the subsequent page split. They are labelled according
to the directions of the horizontal pointers linking the three siblings in the

* |
" R e AR
@ TR AR
;i%@\;i%@ @\;@\
R 5

Fig. 4.52 Insertion in SBB-trees.

SEC. 4.5 MULTIWAY TREES 261

middle figures. The initial situation is shown in the left column; the middle
column illustrates the fact that the lower node has been raised as its subtree
has grown; the figures in the right column show the result of node re-arrange-
ment (page split).

It is advisable to stick no longer to the notion of pages out of which this
organization had developed, for all we are interested in is to bound the maxi-
mum path length to 2-log N. For this we need only to ensure that nowhere
are there two successive horizontal pointers on any search path. However,
there is no reason to forbid any nodes with horizontal pointers to the left
andright. We will therefore define the SBB-tree as a tree that has the following
properties:

1. Every node contains one key and at most two (pointers to) subtrees.

2. Every pointer is either horizontal or vertical. There are no two consecu-
tive horizontal pointers on any search path.

3. All terminal nodes (nodes without descendants) appear at the same
(terminal) level.

From this definition it follows that the longest search path is no longer than
twice the height of the tree. Since no SBB-tree with N nodes can have a height
larger than [log N, it follows immediately that 2[log N'] is an upper bound
on the search path length.

In order to let the reader visualize how these trees grow, he is referred to
Fig. 4.53. The lines represent snapshots taken during the insertion of the
following sequences of keys, where every semicolon marks a snapshot.

M 1 2; 3, 4 5 6; 7;
2) 5 4, 3; 1 2 7 6
3 6 2; 4, 1 7 3 5
4 4 2 6; 1 7; 3 5

bl

(4.85)

b

These pictures make the third property of B-trees particularly obvious: all
terminal nodes appear on the same level. One is therefore inclined to compare
these structures with garden hedges that have been recently trimmed with
hedge scissors. We call these structures Aedges.

The algorithm for the construction of hedge-trees is formulated in
(4.87). It is based on a definition of the node type (4.86) with the two com-
ponents /h and rh denoting horizontality of the left and right pointers.

type node = record key: integer;
count: integer;
left,right: ref; (4.86)
lh,rh: boolean
end

DYNAMIC INFORMATION STRUCTURES CHAP. 4

wh
o0
000

Fig. 453 The development of “hedge” trees with insertion
sequences (4.85).

The recursive procedure search again follows the pattern of the basic
binary tree insertion algorithm (see 4.87). A third parameter 4 is added; it
indicates whether or not the subtree with root p has changed, and it corre-
sponds directly to the parameter 4 of the B-tree search program. We must
note, however, the consequence of representing “pages” as linked lists: a
page is traversed by either one or two calls of the search procedure. We must
distinguish between the case of a subtree (indicated by a vertical pointer) that
has grown and a sibling node (indicated by a horizontal pointer) that has
obtained another sibling and hence requires a page split. The problem is

SEC. 4.5 MULTIWAY TREES 263

easily solved by introducing a three-valued A with the following meanings:

1. A = 0: the subtree p requires no changes of the tree structure.
2. h = 1: node p has obtained a sibling.
3. h = 2: the subtree p has increased in height.

procedure search(x: integer; var p: ref; var h: integer);
var pl,p2: ref;
begin
if p = nil then
begin {word is not in tree; insert it}
new(p); h := 2;
with pt do
begin key := x; count := 1, left := nil;
right := nil; lh := false; rh := false
end
end else
if x < pt.key then
begin search(x, p1.left,h);
if # = 0 then
if p1.lh then
begin pl := ptl.left; h := 2; pl.lh := false;
if p11./h then
begin {LL} p1.left := pl1.right;
plt.right := p; plt.lh := false; p := pl
end else (4.87)
if pl17.rh then
begin {LR} p2 := plt.right; plt.rh := false;
pli.right := p21.left; p21.left := pl;
pl.left := p21.right; p21.right := p; p 1= p2
end
end else
begin 4 := h—1; if h = 0 then p1.lh := true
end
end else
if x > p?T.key then
begin search(x,pt.right,h);
if 7 %= O then
if p1.rh then
begin pl := pt.right; h := 2; pt.rh := false;
if p17.rh then
begin {RR} pi.right := plt.left;
pll.left .= p; plt.rh := false; p := pl
end else

264 DYNAMIC INFORMATION STRUCTURES CHAP. 4

if p17.lh then

begin {RL} p2 := plt.left; pl11.lh := false;
plt.left .= p21.right; p2%.right :== pl;
pl.right == p21.left; p21.left == p; p := p2

end
end else
begin 4 := h—1; if h % 0 then pl.rh := true
end
end else
begin pt.count := pl.count -+ 1; h := 0

end
end {search}

Note that the actions to be taken for node re-arrangement very strongly
resemble those developed in the balanced tree search algorithm (4.63). From
(4.87) it is evident that all four cases can be implemented by simple pointer
rotations: single rotations in the LL and RR cases, double rotations in the
LR and RL cases. In fact, procedure (4.87) appears slightly simpler than
(4.63). Clearly, the hedge-tree scheme emerges as an alternative to the AVL-
balance criterion. A performance comparison is therefore both possible and
desirable.

We refrain from involved mathematical analysis and concentrate on
some basic differences. It can be proven that the AVL-balanced trees are a
subset of the hedge-trees. Hence, the class of the latter is larger. It follows
that their path length is on the average larger than in the AVL case. Note in
this connection the “worst-case” tree (4) in Fig. 4.53. On the other hand, node
re-arrangement will be called for less frequently. The balanced tree will
therefore be preferred in those applications in which key retrievals are much
more frequent than insertions (or deletions); if this quotient is moderate, the
hedge-tree scheme may be preferred.

It is very difficult to say where the borderline lies. It strongly depends not
only on the quotient between the frequencies of retrieval and structural
change, but also on the characteristics of an implementation. This is parti-
cularly the case if the node records have a densely packed representation and
consequently access to fields involves part word selection. Boolean fields
(Ih, rh in the case of hedge-trees) may be handled more efficiently on many
implementations than three-valued fields (ba/ in the case of balanced trees).

4.6. KEY TRANSFORMATIONS (HASHING)

The general problem addressed in the last section and used to develop
solutions demonstrating dynamic data allocation techniques is the following:

Given a set S of items characterized by a key value upon which
an ordering relation is defined, how is S to be organized so that

SEC. 4.6 KEY TRANSFORMATIONS (HASHING) 265

retrieval of an item with a given key k involves as little effort as
possible.

Clearly, in a computer store each item is ultimately accessed by specifying
a storage address a. Hence, the stated problem is essentially one of finding an
appropriate mapping H of keys (K) into addresses (4):

H: K—> A

In Sect. 4.5 this mapping was implemented in the form of various list
and tree search algorithms based on different underlying data organizations.
Here we present yet another approach that is basically simple and very
efficient in many cases. The fact that it also has some disadvantages will be
discussed subsequently.

The data organization used in this technique is the array structure. H
is therefore a mapping transforming keys into array indices, which is the
reason for the term key transformation that is generally used for this technique.
It should be noted that we shall not need to rely on any dynamic allocation
procedures because the array is one of the fundamental, static structures.
This paragraph is thus somewhat misplaced under the chapter heading of
dynamic information structures, but since it is often used in problem areas
where tree structures are comparable competitors, this seems to be an appro-
priate place for its presentation.

The fundamental difficulty in using a key transformation is that the set
of possible key values is very much larger than the set of available store
addresses (array indices). A typical example is the use of alphabetical words
with, say, up to 10 letters as keys for the identification of individuals in a
set of, say, up to a thousand persons. Hence, there are 26!° possible keys,
which are to be mapped onto 10? possible indices. The function H is therefore
obviously a many-to-one function. Given a key k, the first step in a retrieval
(search) operation is to compute its associated index & = H(k), and the second
—evidently necessary—step is to verify whether or not the item with the key
k is indeed identified by 4 in the array (table) 7, i.e., to check whether
T[H(k)].key = k. We are immediately confronted with two questions:

1. What kind of function H should be used?
2. How do we cope with the situation that H does not yield the location of
the desired item?

The answer to question 2 is that some method must be used to yield an alter-
native location, say index A’, and, if this is still not the location of the wanted
item, yet a third index A", and so on. The case in which a key other than the
desired one is at the identified location is called a collision; the task of gen-
erating alternative indices is termed collision handling. In the following we
shall discuss the choice of a transformation function and methods of collision
handling.

266 DYNAMIC INFORMATION STRUCTURES CHAP. 4

4.6.1. Choice of a Transformation Function

A prerequisite of a good transformation function is that it distributes
the keys as evenly as possible over the range of index values. Apart from
satisfying this requirement, the distribution is not bound to any pattern, and
it is actually desirable if it gives the impression that it is entirely at random.
This property has given this method the somewhat unscientific name hashing,
i.e., “chopping the argument up” or “making a mess,” and H is called the
hash function. Clearly, it should be efficiently computable, i.e., be composed
of very few basic arithmetic operations.

Assume that a transfer function ord(k) is available and denotes the
ordinal number of the key k in the set of all possible keys. Assume, further-
more, that the array indices i range over the integers 0... N — 1, where N
is the size of the array. Then an obvious choice is

H(k) = ord(k) mod N (4.88)

It has the property that the key values are spread evenly over the index range,
and it is therefore the basis of most key transformations. It is also extremely
efficiently computable if N is a power of 2. But it is exactly this case that must
be avoided if the keys are sequences of letters. The assumption that all keys
are equally likely is in this case entirely erroneous. In fact, words which differ
by only a few characters will then most likely map onto identical indices,
thus effectively causing a most uneven distribution. In (4.88) it is therefore
particularly recommended to let N be a prime number [4-7]. This has the con-
sequence that a full division operation is needed that cannot be replaced by
a mere masking of binary digits, but this is no serious drawback on most
modern computers that feature a built-in division instruction.

Often, hash functions are used which consist of applyinglogical operations
such as the “exclusive or” to some parts of the key represented as a sequence
of binary digits. These operations may be faster than division on some
computers, but they sometimes fail spectacularly to distribute the keys
evenly over the range of indices. We therefore refrain from discussing such
methods in further detail.

4.6.2. Collision Handling

If an entry in the table corresponding to a given key turns out to be not
the desired item, then a collision is present, i.e., two items have keys mapping
onto the same index. A second probe is necessary, one based on an index
obtained in a deterministic manner from the given key. There exist several
methods of generating secondary indices. An obvious and effective one is
linking all entries with identical primary index H(k) together as a linked list.
This is called direct chaining. The elements of this list may either be in the

SEC. 4.6 KEY TRANSFORMATIONS (HASHING) 267

primary table or not; in the latter case, storage in which they are allocated
is usually called an overflow area. This method is quite effective, although it
has the disadvantage that secondary lists must be maintained and that each
entry must provide space for a pointer (or index) to its list of collided items.

An alternative solution for resolving collisions is to dispense with links
entirely and instead simply look at other entries in the same table until the
item is found or an open position is encountered, in which case one may
assume that the specified key is not present in the table. This method is called
open addressing [4-9]. Naturally, the sequence of indices of secondary probes
must always be the same for a given key. The algorithm for a table lookup can
then be sketched as follows:

h:= Hk); i := 0;
repeat
if T[hl.key = k then item found else
if T[hl.key = free then item is not in table else
begin {collision}
i:= i+1; h:= Hk)+G@)

(4.89)

end
until found or not in table (or table full)

Various functions for resolving collisions have been proposed in the
literature. A survey of the topic by Morris in 1968 [4-8] stimulated consider-
able activities in this field. The simplest method is to try for the next location
—considering the table to be circular—until either the item with the specified
key is found or an empty location is encountered. Hence, G(i) = i; the indices
h; used for probing in this case are

hy, = H(k)

(4.90)
h; = (hy + i) mod N, i=1...N—1

This method is called /inear probing and has the disadvantage that entries
have a tendency to cluster around the primary keys (keys that had not collided
upon insertion). Ideally, of course, a function G should be chosen which again
spreads the keys uniformly over the remaining set of locations. In practice,
however, this tends to be too costly, and methods which offer a compromise
by being simple to compute and still superior to the linear function (4.90)
are preferred. One of them consists of using a quadratic function such that
the sequence of indices for probing is

hy = H(k)

4.91)
By =(hy+i?)mod N (i > 0)

268 DYNAMIC INFORMATION STRUCTURES CHAP. 4

Note that computation of the next index need not involve the operation
of squaring if we use the recurrence relations (4.92) for h, = i? and d, =
2i + 1.

hi+l:hi+di
diyy=d; +2

with A, = 0 and d, = 1. This is called quadratic probing and it essentially
avoids primary clustering, although practically no additional computations
are required. A very slight disadvantage is that in probing not all table entries
are searched, that is, upon insertion one may not encounter a free slot
although there are some left. In fact, in quadratic probing at least half the
table is visited if its size N is a prime number. This assertion can be derived
from the following deliberation. If the ith and the jth probes coincide upon
the same table entry, we can express this by the equation

i2mod N = j2 mod N

(i >0) (4.92)

or
(* — j2) =0 (mod N)

Splitting the differences up into two factors, we obtain
(+)i —j)=0 (modN)

Since i # j, we realize that either i or j have to be at least N/2 in order to yield
i + j = ¢N, with ¢ being an integer.

In practice, the drawback is of no importance since having to perform
N/2 secondary probes and collision evasions is extremely rare and occurs
only if the table is already almost full.

As an application of the scatter storage technique, the Cross-Reference-
Generator Program 4.5 is rewritten in the form of Program 4.8. The principal
differences lie in the procedure search and in the replacement of the pointer
type wordref by the table of words 7. The hash function H is the modulus of
the table size; quadratic probing was chosen for collision handling. Note
that it is essential for good performance that the table size be a prime
number.

Although the method of key transformation is most effective in this
case—actually more efficient than tree organizations—it also has a disadvan-
tage. After having scanned the text and collected the words, we wish to
tabulate these words in alphabetical order. This is very straightforward when
using a tree organization because its very basis is the ordered search tree.
It is not, however, when key transformations are used. The full significance
of the word hashing becomes apparent. Not only does the table printout
process have to be preceded by a sort process (for simplicity Program 4.8
uses a straight selection sort), but it even turns out to be advantageous to
keep track of inserted keys by linking them together in a special list. Hence,

SEC. 4.6 KEY TRANSFORMATIONS (HASHING) 269

the superior performance of the hashing method considering the process of
retrieval only is partly offset by additional operations required to complete
the full task of generating an ordered cross-reference index.

Program 4.8 Cross Reference Generator Using Hash Table.

program crossref (f,output);
{cross reference generator using hash table}

label 13;
const ¢l = 10; {length of words}
2 = 8§; {numbers per line}

3 = 6; {digits per number}
4 = 9999; {max line number}
p = 997; { prime number}
free ="' "
type index = 0..p;

itemref = litem;
word = record key: alfa,

first, last: itemref ;

fol: index
end ;
item = packed record
Ino: 0..c4;
next: itemref
end ;

var i, top: index;
k,k1: integer;

n: integer; {current line number}

id: alfa;

f: text;

a: array [l .. cl] of char;

t: array [0..p] of word; {hash table}

procedure search;
var h,d,i: index;
x: itemref; f: boolean;
{global variables: t, id, top}
begin 4 := ord(id) mod p;
f = false; d := 1;
new(x); x1.Ino := n; xT.next := nil;
repeat
if tf[h).key = id then
begin { found} f := true;
tlh] .last?.next := x; tlh).last := x
end else

if f[h).key = free then
begin {new entry} f := true;
with ¢[4] do
begin key := id; first := x; last := x; fol := top
end ;
top := h
end else
begin {collision} h := h-+d; d := d+2;
if h > p then h := h—p;
if d = p then
begin write/n('TABLE OVERFLOW’); goto 13
end
end
until f
end {search} ;
procedure printtable;
var i,j,m: index;
procedure printword(w: word);
var [integer; x: itemref;
begin write(" ', w.key);
x = w.first; | := 0;
repeat if / = c2 then
begin writeln;
l:= 0; write(" ":cl1+1)
end ;
| := I4+1; write(x?.lno:c3); x := x%.next
until x = nil;
writeln
end {printword} ;
begin i := top;
while i = p do
begin {scan linked list and find minimal key}
m = i; j:= t[i].fol;
while j == p do
begin if [jl.key < t[m].key them m := j;
Jj = tjl.fol
end ;
printword({{m]);
if m = i then
begin t[m].key := i[il.key;
tlm). first := t[i]. first; t[m].last := t[i].last
end ;
i := il fol
end
end {prinitable} ;
Program 4.8 (Continued)

270

SEC. 4.6 KEY TRANSFORMATIONS (HASHING) 271

begin n := 0; k1l := cl; top := p; reset(f);
for i := 0 to p do t[il.key := free;
while —eof (f) do
begin if » = c4 then n := 0;
n = n+1; write(n:c3); {next line}
write(" ');
while —eoln(f) do
begin {scan non-empty line}
if 7 in ['A’..’Z’] then
begin k := 0;
repeat if £ < cl then
begin k := k+1; alk] := f71;
end ;
write(f1); get(f)
until — (/1 in ['A"..'Z", '0".."9);
if Kk > kI then k1 := k else
repeat alkl] := " '; kl := kl—1

until k1 = k;
pack(a,l,id); search;
end else

begin {check for quote or comment}
if f1 = """ then
repeat write(f1); get(f)
until 7 = """ else
if /1 = '{’ then
repeat write(f1); get(f)
until /1 = '} ;
write(f1); get(f)
end
end ;
writeln; get(f)
end ;
13: page; printable
end .

Program 4.8 (Continued)

4.6.3. Analysis of Key Transformation

Insertion and retrieval by key transformation has evidently a miserable
worst-case performance. After all, it is entirely possible that a search argu-
ment may be such that the probes hit exactly all occupied locations, missing
consistently the desired (or free) ones. Actually, considerable confidence in
the correctness of the laws of probability theory is needed by anyone using
the hash technique. What we wish to be assured of is that on the average

272 DYNAMIC INFORMATION STRUCTURES CHAP. 4

the number of probes is small. The following probabilistic argument reveals
that it is even very small.

Let us once again assume that all possible keys are equally likely and that
the hash function H distributes them uniformly over the range of table indices.
Assume, then, that a key has to be inserted in a table of size n which already
contains k items. The probability of hitting a free location the first time is then
1 — k/n. This is also the probability p, that a single comparison only is
needed. The probability that exactly one second probe is needed is equal to
the probability of a collision in the first try times the probability of hitting
a free location the next time. In general, we obtain the probability p;, of an
insertion requiring i probes as listed in (4.93).

p_n—k
'™ h
_k . n—k
P2 = T
k k—1 n—k (4.93)

Ps =3 " w—1 n—-2

_k k=1 k=2 k—it2 n—k

(S (A — n—i+2 n—irt1

The expected number of probes required upon insertion of the £ + 1Ist key
is therefore

.n—k

e TN R

E, . :Ei'Pi: 1 n l

(4.94)

(kk—lk—Z' 1 >_ n-1
nn—1n—2 n—k+1) " n—k+1

Since the number of probes required to insert an item is identical with the
number of probes needed to retrieve it, the result (4.94) can be used to
compute the average number E of probes needed to access a random key in
a table. Let the table size again be denoted by n, and let m be the number of
keys actually in the table. Then

E =

ME —2E S ;l(Hn+1—Hn_m+1) (4.95)

1
m m &n—k 2

where

Hy=1+44 ot

is the harmonic function. H, can be approximated as H,=In (n) + p,
where y is Euler’s constant. If, moreover, we substitute & = m/(n + 1), we

SEC. 4.6 KEY TRANSFORMATIONS (HASHING) 273

obtain

1 4 1) — — _lp_ntl
E=—(n(m+1)—In(n—m+ 1) = —In 1
(4.96)

:"—Tlln(l —)

o is approximately the quotient of occupied and available locations, called
the load factor; & = 0 implies an empty table, & = n/(n + 1) a full table. The
expected number E of probes to retrieve or insert a randomly chosen key is
listed in Table 4.6 as a function of the load factor «. The numerical results
are indeed surprising, and they explain the exceptionally good performance
of the key transformation method. Even if a table is 90 9; full, on the average
only 2.56 probes are necessary to either locate the key or to find an empty
location! Note in particular that this figure does not depend on the absolute
number of keys present, but only on the load factor.

o E
0.1 1.05
0.25 1.15
0.5 1.39
0.75 1.85
0.9 2.56
0.95 3.15
0.99 4.66

Table 4.6 Expected Number of Probes As a Function of the Load Factor.

The above analysis was based on the use of a collision handling method
that spreads the keys uniformly over the remaining locations. Methods used
in practice yield slightly worse performance. Detailed analysis for linear
probing yields an expected number of probes as given by (4.97) [4-10].

_1—a/2 9
E=4—a (4.97)
Some numerical values for E(a) are listed in Table 4.7. The results obtained
even for the poorest method of collision handling are so good that there is

o E
0.1 1.06
0.25 1.17
0.5 1.50
0.75 2.50
0.9 5.50
0.95 10.50

Table 4.7 Expected Number of Probes for Linear Probing.

274 DYNAMIC INFORMATION STRUCTURES CHAP. 4

a temptation to regard key transformation (hashing) as the panacea for
everything. This is particularly so because its performance is superior even
to the most sophisticated tree organization discussed, at least on the basis
of comparison steps needed for retrieval and insertion. It is therefore impor-
tant to point out explicitly some of the drawbacks of hashing, even if they are
obvious upon unbiased consideration.

Certainly the major disadvantage over techniques using dynamic alloca-
tion is that the size of the table is fixed and cannot be adjusted to actual
demand. A fairly good a priori estimate of the number of data items to be
classified is therefore mandatory if either poor storage utilization or poor
performance (or even table overflow) is to be avoided. Even if the number of
items is exactly known—an extremely rare case—the desire for good per-
formance dictates to dimension the table slightly (say 109,) too large.

The second major deficiency of scatter storage techniques becomes evident
if keys are not only to be inserted and retrieved, but if they are also to be
deleted, for deletion of entries in a hash table is extremely cumbersome
unless direct chaining in a separate overflow area is used. It is thus fair to say
that tree organizations are still attractive, and actually to be preferred, if the
volume of data is largely unknown, is strongly variable, and at times even
decreases.

EXERCISES

4.1. Let us introduce the notion of a recursive type,
rectype 7 =T,

as denoting the union of the set of values defined by the type T, and the single
value none, i.c.,
T = T, U {none}.

The definition of the type ped [see (4.3)], for example, could then be simplified
to
rectype ped = record name: alfa;
father, mother: ped
end

Which is the storage pattern of the recursive structure corresponding to
Fig. 4.2?

Presumably, an implementation of such a feature would be based on
a dynamic storage allocation scheme, and the fields named father and
mother in the above example would contain pointers generated automatically
but hidden from the programmer. What are the difficulties encountered in
the realization of such a feature?

4.2. Define the data structure described in the last paragraph of Section 4.2 in
terms of records and pointers. Is it also possible to represent this family

CHAP. 4 EXERCISES 275

constellation in terms of recursive types as proposed in the preceding
exercise ?

4.3. Assume that a first-in-first-out queue Q with elements of type T, is imple-
mented as a linked list. Define a suitable data structure, procedures to insert
and extract an element from Q, and a function to test whether or not the
queue is empty. The procedures should contain their own mechanism for
an economical re-use of storage.

4.4. Assume that the records of a linked list contain a key field of type inreger.
Write a program to sort the list in order of increasing value of the keys.
Then construct a procedure to invert the list.

4.5. Circular lists (see Fig. 4.54) are usually set up with a so-called list header.
What is the reason for introducing such a header ? Write procedures for the
insertion, deletion, and search of an element identified by a given key.
Do this once assuming the existence of a header, once without header.

S~ Pad

Fig. 4.54 Circular list.

4.6. A bidirectional list is a list of elements that are linked in both ways. (See Fig.
4.55.) Both links are originating from a header. Analogous to the preceding
exercise, construct a package of procedures for searching, inserting, and
deleting elements.

——| &—— — — — —>

nil

[]

° «— — ———1 o

®

Fig. 4.55 Bidirectional list.

4.7. Does Program 4.2 work correctly if a certain pair {x, y) occurs more than
once in the input?

4.8. Themessage ‘THIS SET IS NOT PARTIALLY ORDERED” in Program 4.2 is not
very helpful in many cases. Extend the program so that it outputs a sequence
of elements which form a loop if there exists a loop.

276

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

DYNAMIC INFORMATION STRUCTURES CHAP. 4

Write a program that reads a program text, identifies all procedure (subrou-
tine) definitions and calls, and tries to establish a topological ordering among
the subroutines. Let P << Q hold whenever P is called by Q.

Draw the tree constructed by Program 4.3 if the input consists of the
n 4+ 1 numbers
nl,2,3...,n

What are the sequences of nodes encountered when traversing the tree of
Fig. 4.23 in preorder, inorder, and postorder ?

Find a composition rule for the sequence of # numbers which, if applied to
Program 4.4, yields a perfectly balanced tree.

Consider the following two orders for traversing binary trees:
(a) (1) Traverse the right subtree.

(2) Visit the root.

(3) Traverse the left subtree.
(b) (1) Visit the root.

(2) Traverse the right subtree.

(3) Traverse the left subtree.
Are there any simple relationships between the sequences of nodes encoun-
tered following these orders and those generated by the three orders defined
in the text?

Define a data structure to represent n-ary trees. Then write a procedure
that traverses-the n-ary tree and generates a binary tree containing the same
elements. Assume that the key stored in an element occupies £ words and
that each pointer occupies one word of storage. What is the gain in storage
when using a binary tree versus an n-ary tree?

Assume that a tree is built upon the following definition of a recursive data
structure (see Exercise 4.1).

rectype tree = record x: integer;
left,right: tree
end

Formulate a procedure to find an element with a given key x and to perform
an operation P on this element.

In a file system a catalog of all files is organized as an ordered binary tree.
Each node denotes a file and specifies the file name and, among other things,
the date of its last access, encoded as an integer.

Write a program that traverses the tree and deletes all files whose last
access was before a certain date.

In a tree structure the frequency of access of each element is measured empir-
ically by attributing to each node an access count. At certain intervals of
time, the tree organization is updated by traversing the tree and generating
a new tree by using Program 4.4, and inserting the keys in the order of
decreasing frequency count. Write a program that performs this reorganiza-
tion. Is the average path length of this tree equal to, worse, or much worse
than that of an optimal tree?

CHAP. 4 EXERCISES 277

4.18.

4.19.

4.20.

4.21.

4.22.
4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

The method of analyzing the tree insertion algorithm described in Sect. 4.5
can also be used to compute the expected numbers C of comparisons and
M of moves (exchanges) which are performed by Quicksort (Program 2.10)
sorting N elements of an array, assuming that all »! permutations of the n
keys {1, 2, ..., n} are equally likely. Find the analogy and determine C,
and M,

Draw the balanced tree with 12 nodes which has the maximum height of
all 12-node balanced trees. In which sequence do the nodes have to be inserted
so that procedure (4.63) generates this tree?

Find a sequence of # insertion keys so that procedure (4.63) performs each
of the four rebalancing acts (LL, LR, RR, RL) at least once. What is the
minimal length » for such a sequence?

Find a balanced tree with keys 1 ... n and a permutation of these keys so
that, when applied to the deletion procedure (4.64), this procedure performs
each of the four rebalancing routines at least once. What is the sequence
with minimal length n?

What is the average path length of the Fibonacci-tree T,,?

Write a program that generates a nearly optimal tree according to the
algorithm based on the selection of a centroid as root (4.78).

Assume that the keys 1, 2, 3, . . . are inserted into an empty B-tree of order
2 (Program 4.7). Which keys cause page splits to occur? Which keys cause
the height of the tree to increase?

If the keys are deleted in the same order, which keys cause pages to be
merged (and disposed) and which keys cause the height to decrease ? Answer
the question for (a) a deletion scheme using balancing (as in Program 4.7)
and (b) a scheme without balancing (upon underflow, a single item is fetched
from a neighboring page).

Write a program for the search, insertion, and deletion of keys in a binary
B-tree. Use the node type definition (4.84). The insertion scheme is shown in
Fig. 4.51.

Find a sequence of insertion keys which, starting from the empty symmetric
binary B-tree, causes procedure (4.87) to perform all four rebalancing acts
(LL, LR, RR, RL) at least once. What is the shortest such sequence ?

Write a procedure for the deletion of elements in a symmetric binary B-tree.
Then find a tree and a short sequence of deletions causing all four rebalancing
situations to occur at least once.

Compare the performances of the insertion and deletion algorithm of binary
trees, of AVL-balanced trees, and of symmetric binary B-trees on your com-
puter. In particular, investigate the effect of data packing, i.e., of choosing
an economical data representation using only 2 bits for the balance informa-
tion in each node.

Modify the printing algorithm of Program 4.6 in such a way that it can be
used to display symmetric binary B-trees with horizontal and vertical edges.

278

4.30.

4.31.

4.32.

4.33.

4.34.

DYNAMIC INFORMATION STRUCTURES CHAP. 4

If the amount of information associated with each key is relatively large
(compared to the key itself), this information should not be stored in the
hash table. Explain why and propose a scheme for representing such a set
of data.

Consider the proposal to solve the clustering problem by constructing over-
flow trees instead of overflow lists, i.e., of organizing those keys which col-
lided as tree structures. Hence, each entry of the scatter (hash) table can be
considered as the root of a (possibly empty) tree (tree-hashing).

Devise a scheme that performs insertions and deletions in a hash table
using quadratic increments for collision resolution. Compare this scheme
experimentally with the straight binary tree organization by applying random
sequences of keys for insertion and deletion.

The primary drawback of the hash table technique is that the size of the
table has to be fixed at a time when the actual number of entries is not
known. Assume that your computer system incorporates a dynamic storage
allocation mechanism that allows obtaining storage at any time. Hence,
when the hash table H is full (or nearly full), a larger table H' is generated,
and all keys in H are transferred to H’, whereafter the store for H can be
returned to the mechanism’s disposal. This is called rehashing. Write a pro-
gram that performs a rehash of a table H of size n.

Very often keys are not integers but sequences of letters. These words may
greatly vary in length, and therefore they cannot conveniently and eco-
nomically be stored in key fields of fixed size. Write a program that operates
with a hash table and variable length keys.

REFERENCES
ADELSON-VELSKII, G. M. and LANDIs, E. M., Doklady Akademia Nauk
SSSR, 146, (1962), 263-66; English translation in Soviet Math, 3, 1259-63.

Baver, R. and McCreiGHT, E., “Organization and Maintenance of Large
Ordered Indexes,” Acta Informatica, 1, No. 3 (1972), 173-89.

, “Binary B-trees for Virtual Memory,” Proc. 1971 ACM SIGFIDET
Workshop, San Diego, Nov. 1971, pp. 219-35.

, “Symmetric Binary B-trees: Data Structure and Maintenance
Algorithms,” Acta Informatica, 1, No. 4 (1972), 290-306.

Hu, T. C. and Tucker, A. C., SIAM J. Applied Math, 21, No. 4 (1971)
514-32.

K~NuUTH, D. E., “Optimum Binary Search Trees,” Acta Informatica, 1, No. 1
(1971), 14-25.

MAURER, W. D., “An Improved Hash Code for Scatter Storage,” Comm.
ACM, 11, No. 1 (1968), 35-38.

CHAP. 4 REFERENCES 279

4-8.

4-9.

4-10.

4-11.

MoRrris, R., “Scatter Storage Techniques,” Comm. ACM, 11, No. 1 (1968),
38-43.

PeTERSON, W. W., “Addressing for Random-access Storage,” IBM J. Res.
& Dev., 1, (1957), 130-46.

ScHAY, G. and SPrUTH, W., “Analysis of a File Addressing Method,” Comm.
ACM, 5, No. 8 (1962), 459-62.

WALKER, W. A. and GoTLIEB, C. C., “A Top-down Algorithm for Construct-
ing Nearly Optimal Lexicographic Trees,” in Graph Theory and Computing
(New York: Academic Press, 1972), pp. 303-23.

5 LANGUAGE STRUCTURES
AND COMPILERS

In this chapter we are aiming at developing a compiler (translator) for
a simple, rudimentary programming language. This compiler program may
serve as an example for the systematic, well-structured development of a
program of non-trivial complexity and size. In this respect, it constitutes
a welcome application of the program and data structuring disciplines
exposed and elaborated in the preceding chapters, but in addition to this,
the aim is to present a general introduction to the structure and operation
of compilers. Knowledge and insight on this subject will both enhance the
general understanding of the art of programming in terms of high-level
languages and will make it easier for a programmer to develop his own
systems appropriate for specific purposes and areas of application. Since
it is well recognized that the discipline of compiler engineering is a com-
plicated and wide subject, the chapter’s character in this latter respect will
necessarily be introductory and expository. Perhaps the most important
single point is that the structure of language is mirrored in the structure
of its compiler and that its complexity—or simplicity—intimately determines
the complexity of its compiler. We shall therefore start by describing lan-
guage composition and will then concentrate exclusively on simple structures
that lead to simple, modular translators. Language constructs of this kind
of structural simplicity are, as it turns out, adequate for virtually all genuine
needs arising in practical programming languages.

5.1. LANGUAGE DEFINITION AND STRUCTURE

Every language is based on a vocabulary. Its elements are ordinarily
called words; in the realm of formal languages, however, they are called

280

SEC. 5.1 LANGUAGE DEFINITION AND STRUCTURE 281

(basic) symbols. It is characteristic of languages that some sequences of
words are recognized as correct, well-formed sentences of the language and
that others are said to be incorrect or ill-formed. What is it that determines
whether a sequence of words is a correct sentence or not? It is the grammar,
syntax, or structure of the language. In fact, we define the syntax as the set of
rules or formulas which defines the set of (formally correct) sentences. More
importantly, however, such a set of rules not only allows us to decide whether
or not a given sequence of words is a sentence, but it also provides the sen-
tences with a structure which is instrumental in the recognition of a sentence’s
meaning. Hence, it is clear that syntax and semantics (= meaning) are inti-
mately connected. The structural definitions are therefore always to be
considered as auxiliary to a higher purpose. This, however, must not prevent
us from initially studying structural aspects exclusively, ignoring the issues
of meaning and interpretation.

Take, for example, the sentence, “Cats sleep.” The word “cats” is the
subject and “sleep” is the predicate. This sentence belongs to the language
that may, for instance, be defined by the following syntax.

{sentence) ::= {subject) {predicate)
{subjecty ::= cats|dogs
{predicate) ::= sleep| eat

The meaning of these three lines is

1. A sentence is formed by a subject followed by a predicate.
2. A subject consists of either the single word “cats” or the word “dogs.”
3. A predicate consists of either the word “sleep” or the word ‘“eat.”

The idea then is that a sentence may be derived from the start symbol
{sentence) by repeated application of replacement rules.

The formalism or notation in which these rules are written is called
Backus-Naur-Form (BNF). It was first used in the definition of ALGOL
60 [5-7]. The sentential constructs {sentence>, {subject, and {predicate)
are called non-terminal symbols; the words cats, dogs, sleep, and eat are called
terminal symbols, and the rules are called productions. The symbols ::= and
| are called meta-symbols of the BNF notation. If, for the sake of brevity,
we use single capital letters for non-terminal symbols and lower case letters
for terminal symbols, then the example can be rewritten as

EXAMPLE 1
S::=AB
A=xl|y (5.1
B::=z|w

and the language defined by this syntax consists of the four sentences xz,
VZ, XW, YW.

282 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

To be more precise, we present the following mathematical definitions:

1. Let a language L = L(T, N, P, S) be specified by
(a) A vocabulary T of terminal symbols.
(b) A set N of non-terminal symbols (grammatical categories).
(c) A set P of productions (syntactical rules).
(d) A symbol S (from N), called the start symbol.
2. The language L(T, N, P, S) is the set of sequences of terminal symbols
¢ that can be generated from S according to rule 3 below.

L={S*¢ and ¢ e T% (5.2)

(we use Greek letters to denote sequences of symbols.) T* denotes the
set of all sequences of symbols from T.

3. A sequence o, can be generated from a sequence g, if and only if there
exist sequences &, 0,,...,0, , such that every g, can be directly
generated from o, , according to rule 4 below:

(6o =>0,) <> (6,.,—>0) fori=1...n (53)

4. A sequence 5 can be directly generated from a sequence ¢ if and only if
there exist sequences a, f§, ', #’ such that

(@ ¢ =al'p
(b) n=an'p
(c) P contains the production &' ::= g’
Note: We use a::= f,|B,]...|B, as a short form for the set of produc-

tions o ::= ﬂl, o= ﬂz, cee a;::ﬂ”'

For instance, the sequence xz of Example 1 can be generated by the following
sequence of direct generating steps: S — AB -—» xB — xz; hence S - xz,
and since xz € T*, xz is a sentence of the language, i.e., xz € L. Note that
the non-terminal symbols 4 and B occur in non-terminating steps only,
whereas the terminating step must lead to a sequence that contains terminal
symbols only. The grammatical rules are called productions because they
determine how new forms may be generated or produced.

A language is said to be context free if and only if it can be defined in
terms of a context free production set. A set of productions is context free
if and only if all its members have the form

A::=¢ (Ae N, L (NUT)*

i.e., if the left side consists of a single non-terminal symbol and can be
replaced by ¢ regardless of the context in which A occurs. If a production
has the form

aAf 1= alp,

then it is said to be context sensitive because the replacement of 4 by & may

SEC. 5.2 SENTENCE ANALYSIS 283

take place only in the context of & and . We shall subsequently restrict
our attention to context free systems.

Example 2 shows how through recursion an infinity of sentences can be
generated by a finite set of productions.

EXAMPLE 2
S = xA
A= z|yA

The following sentences can be generated from the start symbol S.

(5.4)

5.2. SENTENCE ANALYSIS

The task of language translators or processors is primarily not the genera-
tion but the recognition of sentences and sentence structure. This implies
that the generating steps which lead to a sentence must be reconstructed
upon reading the sentence, and that its generation steps must be retraced.
This is generally a very complicated and sometimes even impossible task.
Its complexity intimately depends on the kind of production rules used to
define the language. It is the task of the theory of syntax analysis to develop
recognizing algorithms for languages with rather complicated structural
rules. Here, however, our goal is to outline a method for constructing
recognizers that are sufficiently simple and efficient to serve in practice.
This implies nothing less than that the computational effort to analyze a
sentence must be a linear function of the length of the sentence; in the very
worst case the dependency function may be n-log n, where # is the sentence
length. Clearly, we cannot be bothered with the problem of finding a recogni-
tion algorithm for any given language, but we will work pragmatically in
the reverse direction: define an efficient algorithm and then determine the
class of languages that can be treated by it [5-3].

A first consequence of the basic efficiency requirement is that the choice
of every analysis step must depend only on the present state of computation
and on a single next symbol being read. Another most important require-
ment is that no step will have to be revoked later on. These two require-
ments are commonly known under the technical term one-symbol-lookahead
without backtracking.

The basic method to be explained here is called top-down parsing because
it consists of trying to reconstruct the generating steps (which in general
form a structural tree) from their start symbol to the final sentence, from the

284 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

top down [5-5 and 5-6]. Let us start by revisiting Example 1: We are given
the sentence, Dogs eat, and we must determine whether or not it belongs to
the language. This, by definition, is only the case if it can be generated from
the start symbol (sentence>. From the grammatical rules it is evident that
it can only be a sentence if it is a subject followed by a predicate. We now
divide the remaining task; first, we determine whether or not some initial
part of the sentence may be generated from the symbol {subject). This is
indeed so since dogs can be directly generated; the symbol dogs is checked
off in the input sentence (i.e., we advance our reading position), and we
proceed to the second task: checking whether or not the remaining part can
be generated from the symbol {predicate>. Since this is again the case, the
result of the analysis process is affirmative. We may visualize this process
by the following trace, showing on the left the tasks still ahead and on the
right the part of the input still remaining unread.

{sentence) dogs eat
{subject) {predicate> | dogs eat
dogs {predicate> | dogs eat
{predicate> eat

eat eat

A second example shows the trace of the analysis process of the sentence
xyyz according to the productions of Example 2.

S Xyyz
xA Xyyz
A yyz
yA yyz

A yz
yA yz

z

z z

Since the process of retracing the generating steps of a sentence is called
parsing, what is described above is a parsing algorithm. In the two examples
the individual replacement steps could decidedly be taken upon inspection
of the single next symbol in the input sequence. Unfortunately, this is not
always possible, as is evident from the following example:

EXAMPLE 3
S ::= A|B
A= xAly (5.5)
B ::= xB|z

SEC. 5.2 SENTENCE ANALYSIS 285

We try to parse the sentence xxxz

S XXXz
A XXXz
xA XXXz
A XXz
xA XXz
A Xz

xA Xz

A z

and get stuck. The difficulty arises in the very first step in which the decision
about replacing S by 4 or B cannot be taken by looking at the first symbol
only. A possible solution lies in simply proceeding according to one of the
possible options and to retreat along the taken path of pursued subgoals
if no further progress is possible. This action is called backtracking. In the
language of Example 3, there is no limit to the number of steps that may
have to be “undone.” This situation is clearly most undesirable; hence, those
language structures that lead to backtracking should be identified and avoided
in practical applications. Consequently, we shall decree that we will only
consider grammar systems satisfying the following restriction that specifies
that the initial symbols of alternativé right parts of productions be distinct.

RULE |
Given the production

A:=¢&]. . ¢,

the sets of initial symbols of all sentences that can be generated from the
&’s must be disjoint, i.e.,

first(E) N first(&;) = @ for all i # j.

The set first(£) is the set of all terminal symbols that can appear in the first
position of sentences derived from &. Let this set be computed according to
the following rules:

1. The first symbol of the argument is terminal:
first(ag) = {a}
2. The first symbol is a non-terminal symbol with the derivation rule

A= o |o,]...]|o,
Then

Sirst(AE) = first(a,) U first(ee,) U ... U first(a,)

In Example 3, we notice that x € first(4) and x € first(B). Hence Rule 1
is violated by the first production. It is indeed trivial to find a syntax for the

286 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

language of Example 3 that satisfies Rule 1. The solution lies in delaying the
factoring until all x’s have been dealt with. The following productions are
equivalent with those of (5.5) in the sense that they generate the same set of
sentences:

S ::= C|xS

C:iim ylz (5.52)
Unfortunately, Rule 1 is not strong enough to shield us from further trouble.

Consider
EXAMPLE 4
S 1= Ax

A= x|€ (5-6)

Here, € denotes the null sequence of symbols. As we try to parse the sentence
x, we may proceed into the following “dead alley”:

S X

Ax X

XX X

x —
The trouble arose because we should have followed the production 4 ::=¢€
instead of A ::= x. This situation is called the null string problem, and it

arises only for non-terminal symbols that can generate the empty sequence.
In order to avoid it, we postulate
RULE 2

For every symbol A € N which generates the empty sequence (4 - ¢),
the set of its initial symbols must be disjoint from the set of symbols that
may follow any sequence generated from 4, i.e.,

first(A) N follow(4) = @&

The set follow(A) is computed by considering every production P; of the
form
X = ¢Any

and taking the set S, = first(n,). follow(A) is the union of all such sets S..
If at least one 7, is capable of generating the empty sequence, then the set
Sollow(X) has to be included in follow(A) as well. In Example 4, Rule 2 is
violated for the symbol A since
first(A) = follow(4) = {x}

The usual way of expressing a repeated pattern of symbols is by using a

recursive definition of a sentential construct. For example, the production
A ::= B|AB

describes the set of sequences B, BB, BBB, Its use, however, is now

SEC. 5.2 SENTENCE ANALYSIS 287

prohibited by Rule 1 because
first(B) N first(AB) = first(B) #+ @
If we replace the production by the slightly modified version
A := ¢e|AB
generating the sequences €, B, BB, BBB, . . ., we violate Rule 2 because

first(A) = first(B)
and therefore
Sfirst(A) N follow(4) #= @

The two restrictive rules obviously prohibit the use of left recursive defini-
tions. A simple method used to avoid these forms is by either using right
recursion

A ::= €|BA

or by extending the symbolism of BNF to allow to express replication explic-
itly; we shall do so by letting {B} denote the set of sequences

€, B, BB, BBB, . ..

Of course, one must be aware that every such construct is capable of generat-
ing the empty sequence. (The brackets { and } are meta-symbols of extended
BNF.)

From the preceding argument and from the transformation of the pro-
ductions (5.5) into (5.5a) it may appear that the “trick” of transforming
grammars might be the panacea to all problems of syntax analysis. We
must, however, keep in mind that sentential structure is instrumental in
defining sentential meaning, that explanations of the meaning of a sentential
construct are usually expressed in terms of the meaning of the sentential
components. Take, for example, the language of expressions consisting of
operands a, b, ¢ and the minus sign meaning subtraction.

S = A|S—4
A= alb|c

According to this grammar, the sentence a—b—c¢ has a structure that can be
expressed by using parentheses as follows: ((a—b)—c). However, if the
grammar is transformed into the syntactically equivalent but left recursion
free form

S:ii= A|A-S

A = a|b|c
then the same sentence would be given another structure, namely, the one

expressed as (a—(b—c)). Considering the conventional meaning of subtrac-
tion, we see that the two forms are not at all semantically equivalent.

288 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

The lesson, then, is that when defining a language with an inherent mean-
ing, one must always be aware of the semantic structure when devising its
syntactic structure because the latter must reflect the former.

5.3. CONSTRUCTING A SYNTAX GRAPH

In the previous paragraph, a top-down recognition algorithm was
presented that is applicable to grammars satisfying the restrictive Rules 1
and 2. We now turn to the problem of converting this algorithm into a con-
crete program. There are two essentially different techniques that can be
applied. One is to design a general top-down parsing program valid for all
possible grammars (satisfying Rules 1 and 2). In this case, particular gram-
mars are to be supplied in the form of some data structure, on the basis of
which the program operates. This general parser is in some sense controlled
by the data structure; the program is then called table driven. The other
technique is to develop a top-down parsing program which is specific for the
given language and to construct it systematically according to a set of rules
which map a given syntax into a sequence of statements, i.e., into a pro-
gram. Both techniques have their advantages and disadvantages; both will be
introduced subsequently. In the development of a compiler for a given pro-
gramming language the high degree of flexibility and parametrization of the
general parser are hardly needed, whereas the specific parser approach usually
leads to more efficient and more easily manageable systems and is therefore
preferable. In both cases it is advantageous to represent the given syntax
by a so-called recognition- or syntaxgraph. This graph reflects the flow of
control during the process of parsing a sentence.

It is a characteristic of the top-down approach that the goal of the parsing
process is known at the start. The goal is to recognize a sentence, i.e., a
sequence of symbols generatable from the start symbol. The application of
a production, that is, the replacement of a single symbol by a sequence
of symbols, corresponds to the splitting up of a single goal into a number of
subgoals to be pursued in specified order. The top-down method is therefore
also called goal-oriented parsing. In constructing a parser it is easy to take
advantage of this obvious correspondence of non-terminal symbols and
goals: we construct a subparser for each non-terminal symbol. Each sub-
parser has the goal of recognizing a subsentence generatable from its cor-
responding non-terminal symbol. Since we wish to construct a graph to
represent the total parser, each non-terminal will be mapped into a subgraph.
This leads us to the following rules for constructing a recognizer graph.

RULES oOF GRAPH CONSTRUCTION ;

Al. Each nonterminal symbol A with corresponding production set

A= &|&] . |,

SEC.

A2.

A3.

A4.

AS.

Ab6.

5.3 CONSTRUCTING A SYNTAX GRAPH 289

is mapped into a recognition graph A4, whose structure is determined by
the righthand side of the production according to Rules A2 through
A6.

Every occurrence of a terminal symbol x in a &, corresponds to a recog-
nizing statement for this symbol and the advancing of the reader to the
next symbol of the input sentence. This is represented in the graph by
an edge labelled x enclosed in a circle.

Every occurrence of a non-terminal symbol B in a &; corresponds to an
activation of the recognizer B. This is represented in the graph by an

edge labelled B:

A production having the form

is mapped into the graph

where every is obtained by applying construction Rules A2 through
A6 to ¢,
A £ having the form

=0, ...y,

is mapped into the graph

where every H is obtained by applying construction Rules A2 through
A6 to a;.
A ¢ having the form

¢ = {o}

290 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

is mapped into the graph

C oD

where l_a—_l is obtained by applying construction Rules A2 through A6

to .
EXAMPLE 5
A= x|(B)
B ::= AC (5.7
C = {+4]}

Here, +, x, (, and) are the terminal symbols, whereas { and } belong to the
extended BNF and, hence, are meta-symbols. The language generatable
from A consists of expressions with operands x, operator -+, and parentheses.
Examples of sentences are

The graphs resulting from the application of the six construction rules are
shown in Fig. 5.1. Note that it is possible to reduce this system of graphs
into a single graph by suitable substitution of C in B and of B in A (see Fig.

5.2).
’ O}

()
NI

s ———{F}-[2

Y

Fig. 5.1 Syntax graphs according to Example 5.

SEC. 5.4 CONSTRUCTING A PARSER FOR A GIVEN SYNTAX 291

AT@HE] ®

(%)
o/

Fig. 5.2 Reduced syntax graph corresponding to Example 5.

The recognition graph is an equivalent representation of the language
grammar; it can be used instead of the set of productions in BNF. It is a very
convenient form and in many (if not most) instances preferable to BNF.
It certainly gives a clearer and more concise picture of a language structure
and also conveys a more direct understanding of the parsing process. The
graph is an appropriate form for the designer of a language to start from.
Examples of syntax specifications of entire languages are shown in Sect.
5.7 for PL/0, and in Appendix B for PASCAL.

Restrictive Rules 1 and 2 were imposed in order to allow for deterministic
parsing with only one symbol lookahead. How are these rules manifested in
the graph representation? It is in this respect that the clarity of the graph
becomes most obvious:

1. Rule 1 translates into the requirement that at every fork the branch to
be pursued must be selectable by looking only at the next symbol on this
branch. This implies that no two branches must start with the same next
symbol.

2. Rule 2 translates into the requirement that if any graph A can be traversed
without reading an input symbol at all, then this “null branch” must be
labelled with all symbols that may follow 4. (This will affect the decision
to be made upon entering this branch).

It is simple to verify, whether or not a system of graphs satisfies these two
adapted rules, without resorting to a BNF representation of the grammar.
As an auxiliary step, the sets first(A) and follow(A) are determined for each
graph A. Application of Rules 1 and 2 is then immediate. We call a system
of graphs that satisfies these two rules a deterministic syntax graph.

5.4. CONSTRUCTING A PARSER FOR A
GIVEN SYNTAX

A program which accepts and parses a language is readily derived from
its deterministic syntax graph (if such a graph exists). The graph essentially
represents the flowchart of the program. In developing this program, how-

292 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

ever, one is well-advised to strictly follow a given set of translation rules
similar to those that may have led from a BNF to a graph representation of
the syntax in the first place. These rules are listed below. They are applicable
in a specific framework. This framework consists of a main program in which
the procedures corresponding to the various subgoals are embedded and of
a routine to proceed to the next symbol.

For the sake of simplicity, let us assume that the sentence to be parsed is
represented by the file input and that terminal symbols are individual charac-
ters. We now postulate the existence within this framework of a character
variable ch that always represents the next symbol being read. Stepping to
the next symbol is then expressed by the statement

read(ch)

The main program now consists of an initial statement to read the first
character, followed by a statement activating the main parsing goal. The
individual routines corresponding to parsing goals or graphs are obtained
by obeying the following rules. Let the statement obtained by translating
the graph S be denoted by T(S).

RULES OF GRAPH TO PROGRAM TRANSLATION:

Bl. Reduce the system of graphs to as few individual graphs as possible
by appropriate substitutions.

B2. Translate each graph into a procedure declaration according to the
subsequent rules B3 through B7.

B3. A sequence of elements

is translated into the compound statement

begin 7(S,); T(S,); ...; T(S,) end

B4. A choice of elements

SEC. 5.4 CONSTRUCTING A PARSER FOR A GIVEN SYNTAX 293

BS.

B6.

B7.

is translated into the selective or conditional statement

case ch of if chin L, then T(S,) else
L, : T(S); if ch in L, then T(S,) else
L,: T(S,); | | eeeeenenn

------ if chin L, then 7(S,) else
L,: TS, error
end

where L; denotes the set of initial symbols of the construct S,(L;=first(S,)).
Note: if L, consists of a single symbol a, then of course “ch in L,” should
be expressed as “ch = a”.

A loop of the form

is translated into the statement

while ch in L do T(S)

where T(S) is the translation of S according to rules B3 through B7,
and L is the set L = first(S) (see preceding note).
An element of the graph denoting another graph 4

is translated into the procedure call statement A.
An element of the graph denoting a terminal symbol x

—C)—

is translated into the statement

if ch = x then read(ch) else error

where error is a routine called when an ill-formed construct is encoun-
tered.

294 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

The application of these rules is now demonstrated by translating the re-
duced graph of Example 5 (Fig. 5.2) into a recognizer program (Program 5.1).

program parse (input, output);
var ch: char;
procedure A4;
begin if ch = ’'x’ then read(ch) else
if ch = (' then
begin read(ch); A;
while ch = '+’ do
begin read(ch); A
end ;
if ch = ')’ then read(ch) else error
end else error
end ;
begin read(ch); A
end

Program 5.1 Parsing Program for Grammar of Example 5.

During this translation some obvious programming rules have been freely
applied in order to simplify the program. A literal translation would have
resulted, for example, in the fourth line reading

if ch = 'x’ then
if ch = ’'x’ then read(ch) else error
else. ...

which can obviously be reduced into the simpler form presented in the
program. Also the read statements in the fifth and seventh lines resulted from
similar reductions.

It seems sensible to find out where such reductions are possible in general
and then to represent them directly in terms of the graph. The two relevant
cases are covered by the following additional rules:

B4a

SEC. 5.5 CONSTRUCTING A TABLE-DRIVEN PARSING PROGRAM 295

if ch = ’x,’ then begin read(ch); T(S,) end else
if ch = 'x,’ the begin read(ch); T(S,) end else

if ch = 'x,’ then begin read(ch); T(S,) end else error

o

while ch = 'x’ do
begin read(ch); T(S) end

In addition, the frequently occurring construct

read(ch); T(S);
while B do
begin read(ch); T(S) end

can of course be expressed by the shorter form
repeat read(ch); T(S) until B (5.8)

The procedure error has so far been left unspecified on purpose. Since
we are now only interested in finding out whether an input sequence is
well- or ill-formed, we may think of this procedure as a program terminator.
Naturally, in practice, more refined principles of coping with ill-formed
sentences have to be used. This will be the subject of Sect. 5.9.

5.5. CONSTRUCTING A TABLE-DRIVEN
PARSING PROGRAM

Instead of composing a specific program according to the rules given
in the preceding chapter for each language and syntax that arises, one may
construct a single, general parsing program. Individual language grammars
are then fed to the general program in the form of initial data preceding the
sentences that are to be parsed. The general program strictly follows the
rules of the simple top-down parsing method, and it is straightforward if
the underlying syntax graph is deterministic, that is, if the grammar is such
that sentences can be parsed with one symbol of lookahead and without
backtracking.

Hence, the grammar, which we assume to be represented in the form of a
deterministic set of syntax graphs, is translated into an appropriate data
structure instead of into a program structure [5-2]. The natural technique

296 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

for representing a graph is by introducing a node for each symbol and by
connecting these nodes by pointers. Hence, the “table” is not a simple array
structure. The rules which guide the translation are given below and are
self-evident. The nodes of the data structure are records of two variants:
one for terminal and the other for non-terminal symbols. The former are
identified by the terminal symbol for which they stand, the latter by a pointer
to the data structure representing the corresponding non-terminal symbol.
Both variants contain two pointers, one designating the symbol that fol-
lows, the successor, and the other forming the list of possible alternatives.
The resulting data type definition is given in (5.9), and within graphs we will
depict a node as

sym

alt suc

At it turns out, we also need an element to represent the empty sequence,
the null symbol. We shall denote it by a terminal element, called empty.

type pointer = lnode;
node =
record suc,alt: pointer;
case terminal: boolean of (5.9)
true: (tsym: char);
false: (nsym: hpointer)
end

The translation rules from graphs into data structures are analogous to
Rules B1 through B7.

RULES OF GRAPH TO DATA STRUCTURE TRANSLATION:

C1. Reduce the system of graphs to as few individual graphs as possible
by suitable substitution.

C2. Translate each graph into a data structure according to the subsequent
rules C3 through C5.

C3. A sequence of elements (see picture of Rule B3) is translated into the
following list of data nodes:

s, S, s

n

— T~ | ol T

C4. The list of alternatives (see picture of Rule B4) is translated into the
data structure

SEC. 5.5

CONSTRUCTING A TABLE-DRIVEN PARSING PROGRAM

S

n

nil I

C5. A loop (see picture in Rule BS) is translated into the structure

S

=

)

A

empty

nil | o—

297

As an example, the graph corresponding to the syntax of Example 5
(Fig. 5.2) results in the structure in Fig. 5.3. The data structure is identified
by a header node that contains the name of the non-terminal symbol (goal)
for which the structure stands. This header is so far unnecessary, for the

—_—

A

1

(

(l + l
L I g nil l ® 9 | &—r—| nil I 1
y
X empty)
nil I nil nil l (4 > nil | nil

Fig. 5.3 Data structure representing graph of Fig. 5.2.

298 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

pointer of the goal field could as well be pointing directly at the “entrance”
of the appropriate structure. The header may be used, however, to carry
a printable name of the structure.

type hpointer = Theader;
header =
record entry: pointer; (5.10)
sym: char
end

The program to parse a sentence—represented as a sequence of charac-
ters on the input file—now consists of a repeated statement describing the
transition from one node to a next node. The program is expressed as a
procedure describing the interpretation of a graph; if a node representing
a non-terminal symbol is encountered, then the interpretation of that graph
precedes the completion of the interpretation of the present graph. Hence,
the interpretation procedure is activated recursively. If the current symbol
(sym) in the input file matches the symbol in the current node of the data
structure, then the suc field is selected to indicate the next step, otherwise
the alt field.

procedure parse(goal: hpointer; var match: boolean);
var s : pointer;
begin s := goall.entry;
repeat
if s7.terminal then
begin if s7.tsym = sym then

begin match := true; getsym .11)
end ’
else match := (s7.tsym = empty)
end
else parse(s!.nsym, match);
if match then s := sl.suc else s := s1.alt
until s = nil

end

The parsing program (5.11) has the property of immediately pursuing a
new subgoal G whenever one appears, without first inspecting whether
or not the current symbol is contained in the set of initial symbols first(G).
This implies that the underlying syntax graph must be void of choices
between several alternative non-terminal elements. In particular, if a non-
terminal symbol is capable of generating the empty sequence, then none of
its right parts must start with a non-terminal symbol.

SEC. 5.6 A TRANSLATOR FROM BNF INTO PARSER-DRIVING DATA STRUCTURES 299

More sophisticated table-driven parsers may readily be derived from
(5.11) which operate on less restrictive classes of grammars. Only slight
modifications will also enable it to perform backtracking with, however,
notable loss of effectiveness.

Representing a syntax by a graph has one decisive disadvantage: comput-
ers cannot directly read graphs. But the data structure that drives the parser
must somehow be constructed before parsing can start. It is in this respect
that the BNF-representation of grammars appears ideal—as input form for
general parsing programs. The next section is therefore devoted to the design
of a program which reads a sequence of BNF-productions and transforms
them according to rules Bl through B6 into an internal data structure, upon
which the parser (5.11) can operate [5-8].

5.6. A TRANSLATOR FROM BNF INTO
PARSER-DRIVING DATA STRUCTURES

A translator accepting BNF-productions, converting them into some oth-
er representation, is a genuine example of a program whose input data can
be regarded as sentences belonging to a language. In fact, it is most appro-
priate to consider BNF as a language itself, characterized by its own syntax
that may, of course, once again be specified in terms of BNF-productions.
As a consequence, this translator may serve as a further example of the
construction of a recognizer that is, moreover, extended into a translator,
or, in general, a processor of its input. Therefore, we shall proceed in the
following manner:

Step 1. Define a syntax of the meta language, called EBNF (for
Extended BNF).

Step 2. Construct a recognizer for EBNF according to the rules given
in Sect. 5.4.

Step 3. Extend the recognizer into a translator, combining it with the
table-driven parser.

Let the meta-language—the language of syntax productions—be
described by the following productions:

{production’ ::= {symbol> = {expression).
{expression) = (term) {, {term}} 512
{term) ::= (factor) { {factor)} 12

{factor) 1= {symbol) | [{term}]

300 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Note that symbols different from the usual BNF meta-symbols have been
used to denote exactly these symbols in the production input language.
There are two reasons for this:

1. To distingish meta-symbols and language symbols in (5.12).
2. To use characters more commonly available on computing equipment
and, in particular, to be able to use the single character = instead of

The correspondences of usual BNF with our input form are shown in
Table 5.1. In addition, each production is terminated by an explicit period.

BNF Input EBNF

{ [
}]

Table 5.1 Meta and Language Symbols.

Using this input language to describe the syntax of Example 5 (5.7), we
obtain

A = x, (B).
B = AC. (5.13)
C = [+4].

In order to simplify the translator to be constructed, we postulate that
terminal symbols be single letters and that each production be written on a
separate line. This includes the possibility of using blanks in the input (to
make it more readable) and of ignoring these blanks by the translator.
However, the statement read(ch) in Rule B7 must now be replaced by a call
to a routine that obtains the next relevant character. This is a very simple
case of what is generally called a lexical scanner, or simply a scanner. The
purpose of a scanner is to extract the next symbol—as defined by language
representation rules—from the input sequence of characters. So far we have
considered symbols to be identical to characters; this, however, is a special
case and is rarely done in practice.

As a last rule, in the input-BNF we postulate that non-terminal symbols
be represented by the letters A through H and terminal symbols by the letters
| through Z. This is merely a rule of convenience that has no deeper reasons.
But it makes it unnecessary to list the vocabularies of terminal and non-
terminal symbols prior to the list of productions.

By proceeding strictly according to the parser construction rules Bl
through B7, and after having verified that (5.12) satisfies the Restrictive
Rules 1 and 2, we obtain Program 5.2 as a recognizer for the language
specified by (5.12). Note that the scanner is called getsym.

SEC. 5.6 A TRANSLATOR FROM BNF INTO PARSER-DRIVING DATA STRUCTURES 301

program parser(input, output);
label 99;

const empty == '+';

var sym: char;

procedure getsym;
begin

repeat read(sym); write(sym) until sym = '’
end {getsym} ;

procedure error;
begin writeln;

writeln (" INCORRECT INPUT’); goto 99
end {error} ;

procedure term;
procedure factor;
begin
if symin['A’..'Z', empty] then getsym else
if sym = ‘[’ then
begin getsym; term;
if sym = ']’ then getsym else error
end else error
end { factor} ;
begin factor;
while sym in ['A’" .. 'Z", '[', empty] do factor
end {term} ;

procedure expression;
begin term;

while sym = ', do
begin getsym; term
end

end {expression} ;

begin {main program}
while —eof (input) do
begin getsym;
if symin ['A’..'Z'] then getsym else error;
if sym = "=’ then getsym else error;
expression;
if sym = ' then error;
writeln; readin;
end ;
99: end .

Program 5.2 Parser of Language (5.13).

302 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Step 3 in the development of the translator is concerned with constructing
the desired data structure that represents the BNF productions read and
that can be interpreted by the parsing procedure (5.11). Unfortunately,
this step is not susceptible to formalization as was the step concerned with
the recognizer construction. Lacking a formal approach, we describe once
again the structures that are desired to represent each language construct
by a picture. The resulting structures are then passed as result parameters
of the corresponding recognition procedures, which by then have been
augmented into translation procedures. It is natural to return as results
not the data structures themselves, but pointers p,q, r referring to the
structures instead.

Factors: p ’ sym

—[]

1. (symbol}

2. Eermﬂ

q—> empty

Terms:
(factor-1) ... (factor-n)

p——{ fac-1

—

p— fac-1 fac-2 fac-n -~

q—» l - nil | e ... nil
Expressions:

(term-1) (term-2) C. (term-n)

p—{ term-1 term-2 L. termn |l«——q

\| N

SEC. 5.6 A TRANSLATOR FROM BNF INTO PARSER-DRIVING DATA STRUCTURES 303

Clearly, it is the task of the procedure factor to generate new elements
of the data structure; the task of the remaining two procedures is to link
them together into a linear list in which rerm uses the suc field and expression
uses the alt field for chaining. The details are evident from Program 5.3.

The technique of processing non-terminal symbols needs further clarifica-
tion. It is possible for a non-terminal symbol to appear as a factor before it
appears as a left part in a production. A procedure find(sym, h) is used to
locate the symbol sym in a linear list in which all headers representing the
non-terminal symbols are collected. If a symbol is located, its reference is
assigned to /; if it is not yet present in the list, it is added to the list. Procedure
find uses the sentinel technique discussed in detail in Chap. 4.

Program 5.3 consists of three parts, each corresponding to a section of
input. Part 1 is concerned with the processing of productions into correspond-
ing data structures. Part 2 reads and identifies a single symbol, namely, the
one specified as the start symbol which generates sentences of the language.
(It is preceded by a $ sign delimiting Parts 1 and 2 of the input data.) Part
3 is the parsing program (5.11) reading input sentences under control of the
data structure generated in Part 1.

It is noteworthy that Program 5.3 has been developed by merely inserting
further statements into the unchanged Program 5.2. The existing program
deals exclusively with the recognition of correctly formed sentences, and
it can be used as a framework for the extended program that not only recog-
nizes but also processes or translates the accepted sentences. This method
of constructing language processors by stepwise refinement, or rather stepwise
enrichment, is highly recommended. It permits the designer to deal exclusively
with a selected aspect of language processing before taking into account
other aspects, and hence it facilitates the task of verifying the correctness
of a translator program, or at least of maintaining a high confidence level
throughout the program’s development. In this rather simple example this
development consists of only two steps. More complicated languages and
more complicated translation tasks require a considerably higher number
of individual enrichment steps. A highly similar development in three steps
will be the subject of Sects. 5.8 through 5.11.

As evidenced by the development of Program 5.3, the syntax table-driven
—or rather data structure-driven—approach to parsing provides a degree
of freedom and flexibility not presented in the scheme of the specific parser
program. This additional flexibility, although not required in general, is
the very essence of compilers for so-called extensible languages. An extensible
language can be extended by further syntactic constructs, more or less at
the discretion of the programmer. Analogous to the input of Program 5.3, the
input of an extensible language compiler consists of a section specifying
the language extensions used in the subsequent program. A more ambitious

304 LANGUAGE STRUCTURES AND COMPILERS CHAP. §

scheme even allows altering the language during the process of compilation
by intermixing parts of the program to be translated with sections of new
language specifications.

As appealing or exciting as these ideas may seem, efforts to realize such
compilers have been marked by a notable lack of success. The reason is that
the aspect of syntax and of sentence recognition is but a part of the whole
task of translation, and in fact even the minor part. It is also the part that
is most easily formalized and is therefore most readily represented by a
systematized table structure. The much harder part to formalize is the
meaning of the language, that is, the output or result of translation. This
problem has so far not been solved even nearly satisfactorily, which explains
why compiler designers tend to be much more enthusiastic about extensible
languages before than after their first completed assignment. We conclude
our lesson by devoting the remainder of this chapter to developing a modest
compiler for one specific, small programming language.

Program 5.3 Translator of Language (5.13).

program generalparser (input, output);
label 99;
const empty = '+';
type pointer = Tnode;
hpointer = Theader
node = record suc, alt: pointer;
case terminal: boolean of
true: (tsym: char);
false: (nsym: hpointer)
end ;
header = record sym: char;
entry: pointer;
suc: hpointer
end ;
var list, sentinel, h: hpointer;
p: pointer;
sym: char,
ok: boolean;

procedure getsym;
begin

repeat read(sym); write(sym) until sym = '’
end {getsym} ;

procedure find(s: char; var h: hpointer);
{locate nonterminal symbol s in list. if not present, insert it}
var hl: hpointer;
begin il := list; sentinell.sym := s;
while h11.sym = sdo hl := hl%.suc;
if A1 = sentinel then
begin {insert} new (sentinel);

h1%.suc := sentinel; hl11.entry := nil
end ;
h:= hl
end { find} ;

procedure error;
begin writeln;

writeln (INCORRECT SYNTAX'); goto 99
end {error} ;

procedure term (var p,q,r: pointer);
var a,b,c: pointer;
procedure factor (var p,q: pointer);
var a,b: pointer; h: hpointer;
begin if sym in ['A’ .. 'Z’, empty] then
begin {symbol} new(a);
if symin['A’ .. H’] then
begin {nonterminal} find(sym,h);

al.terminal := false; al.nsym := h
end else
begin {terminal}
al.terminal := true; al.tsym := sym
end ;
p = a; q .= a; getsym
end else

if sym = [’ then
begin getsym; term(p,a,b); bt.suc := p;
new(b); bt.terminal := true; bl.tsym := empty;
at.alt = b; q := b;
if sym = ']’ then getsym else error
end else error
end { factor} ;
begin factor(p,a); q := a;
while sym in ['A" .. 'Z', '[', empty] do
begin factor(at.suc, b); bt.alt 1= ; anil:= b
end ;
r:=a
end {term} ;
Program 5.3 (Continued)

305

306 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

procedure expression (var p,q: pointer);
var a,b,c: pointer;

begin term(p,a,c): c¢t.suc := nil;
while sym = ')’ do
begin getsym;
term(at.alt, b, ¢): ct.suc := nil; a:= b
end ;
qg:=a

end {expression} ;

procedure parse (goal: hpointer; var match: boolean);
var s: pointer;
begin s := goal?.entry;
repeat
if s7.terminal then
begin if s7.tsym = sym then

begin match := true; getsym
end
else match := (st.tsym = empty)
end
else parse(st.nsym, match); .
if match then s := s.suc else s := s1.alt

until s = nil
end {parse} ;

begin { productions}
getsym; new(sentinel); list := sentinel,
while sym = '$’ do
begin find(sym,h);
getsym; if sym = "=’ then getsym else error;
expression (ht.entry, p); pt.alt := nil;
if sym = '. then error;
writeln; readin; getsym
end ;
h := list; ok := true; {check whether all symbols are defined}
while i = sentinel do
begin if 41.entry = nil then
begin writeln(" UNDEFINED SYMBOL *, hT.sym);
ok := false
end ;
h := hl.suc
end ;
Program 5.3 (Continued)

SEC. 5.7 THE PROGRAMMING LANGUAGE PL/0 307

if —ok then goto 99;
{goal symbol}
getsym; find(sym,h); readin; writeln;
{sentences}
while —eof (input) do
begin write(' '); getsym; parse(h,ok);
if ok N\ (sym=".) then writeln (" CORRECT)
else writeln (" INCORRECT');
readin
end ;
99: end .

Program 5.3 (Continued)

5.7. THE PROGRAMMING LANGUAGE PL/0

The remaining sections of this chapter are devoted to the development
of a compiler for a language to be called PL/0. The necessity of keeping this
compiler reasonably small in order to fit into the framework of this book and
the desire to be able to expose the most fundamental concepts of compiling
high-level languages constitute the boundary conditions for the design of this
language. There is no doubt that either an even simpler or a much more
complicated language could have been chosen; PL/0 is one possible com-
promise between sufficient simplicity to make the exposition transparent
and sufficient complexity to make the project worthwhile. A considerably
more complicated language is PASCAL, whose compiler was developed
using the same techniques, and whose syntax is shown in Appendix B.

As far as program structures are concerned, PL/0 is relatively complete.
It features, of course, the assignment statement as the basic construct on
the statement level. The structuring concepts are those of sequencing,
conditional execution and repetition, represented by the familiar forms of
begin/end-, if-, and while statements. PL/0 also features the subroutine
concept and, hence, contains a procedure declaration and a procedure call
statement.

In the realm of data types, however, PL/O adheres to the demand for
simplicity without compromise: integers are its only data type. It is possible
to declare constants and variables of this type. Of course, PL/0 features the
conventional arithmetic and relational operators.

The presence of procedures, that is, of more or less “self-contained”
partitions of a program offers the opportunity to introduce the concept
of locality of objects (constants, variables, and procedures). PL/O therefore

308 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

features declarations in the heading of each procedure, implying that these
objects are understood to be local to the procedure in which they are declared.

This brief introduction and overview provide the necessary intuition
to understand the syntax of PL/0. This syntax is presented in Fig. 5.4 in the
form of seven diagrams. The task of transforming the diagrams into a set
of equivalent BNF-productions is left to the interested reader. Fig. 5.4 is
a convincing example of the expressive power of these diagrams which allow
formulation of the syntax of an entire programming language in such a con-
cise and readable form.

The following PL/0 program may demonstrate the use of some features
that are included in this mini-language. The program contains the familiar
algorithms for multiplication, division, and finding the greatest common
divisor (gcd) of two natural numbers.

Program
—_— block ,——»@

Block

number

A
L/

B
(
(= O

statement

Fig. 5.4 Syntax of PL/0.

SEC. 5.7

Statement

THE PROGRAMMING LANGUAGE PL/0 309

_T——" ident } @ expression

—

G

K.(beg@—» statement E

statement

=
=
0>

L» condition

condition

n statement |—

o)

statement |——~

_ J
Condition
(oad) ;
de/ expression 7
expression w w w w
E E ; ; expression

Fig. 5.4 (Continued)

310 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Expression

O

term
Term
——— | factor

factor
Factor

(ident '}

N
{ number }
N

expression @

Fig. 5.4 (Continued)

const m = 7, n = 85;
var x,y,z,q,r;

procedure multiply;
var a,b;
begina := x; b := y; z := 0;
while 5 > 0 do
begin (5.14)
ifodd b thenz := z + a;
a:= 2*xa; b := b/2;
end
end ;

SEC. 5.8 A PARSER FOR PL/0 311

procedure divide;

var w;
beginr := x;q := 0; w:= y;
while w << rdow := 2sw;
while w > y do
begin g := 2+q; w 1= w/2; (5.15)
if w << r then
beginr := r—w; q := q-+1
end
end
end ;

procedure gcd;
var f.g;
begin f := x; g := y;
while f = g do
begin if f << gtheng := g—f; (5.16)
ifg < fthenf := f—g;
end ;
z:=f
end ;
begin
x := m; y := n; call multiply;
x := 25; y := 3; call divide;
x := 84; y := 36; call gcd,
end .

5.8. A PARSER FOR PL/0

As a first step toward the PL/0 compiler a parser is being developed.
This can be done strictly according to the parser Construction Rules Bl
through B7 outlined in Sect. 5.4. This method, however, is only applicable
if the Restrictive Rules 1 and 2 are satisfied by the underlying syntax. We
are therefore obliged to verify this condition, as formulated for their applica-
tion to syntax graphs.

Rule 1 specifies that every branch emanating from a fork point must
lead toward a distinct first symbol. This is very simple to verify on the syntax
diagrams of Fig. 5.4. Rule 2 applies to all graphs that can be traversed without
reading any symbol. The only such graph in the PL/0 syntax is the one
describing statements. Rule 2 demands that all first symbols that may follow
a statement must be disjoint from initial symbols of statements. Since later
on it will be useful to know the sets of initial and following symbols for all
graphs, we shall determine these sets for all seven non-terminal symbols
(graphs) of the PL/0 syntax (except for “program”). Table 5.2 provides the

312 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Non-terminal Initial Follow
Symbol § Symbols L(S) Symbols F(S)
Block const var .3

procedure ident
if call begin while

Statement ident call . ; end
begin if while
Condition odd + — (then do
ident number
Expression + —(-3)R
ident number end then do
Term ident number (.3)R + —
end then do
Factor ident number ()R A —
end then do

Table 5.2 Initial and Follow Symbols in PL/0.

desired assurance, namely, that the sets of initial and following symbols of
statements do not intersect. Application of the parser Construction Rules
B1 through B7 is thereby legalized.

The careful reader will have noticed that the basic symbols of PL/0 are
no longer single characters as in the preceding examples. Instead, the basic
symbols are themselves sequences of characters, such as BEGIN, or :=.
As in Program 5.3, a so-called scanner is used to take care of the merely
representational or lexical aspects of the input sequence of symbols. The
scanner is conceived as a procedure getsym whose task is to get the next
symbol. The scanner serves the following purposes:

1. It skips separators (blanks).

2. It recognizes reserved words, such as BEGIN, END, etc.

3. It recognizes non-reserved words as identifiers. The actual identifier is
assigned to a global variable called id.

4. It recognizes sequences of digits as numbers. The actual value is assigned
to a global variable num.

5. It recognizes pairs of special characters, such as :=.

In order to scan the input sequence of characters, getsym uses a local
procedure getch whose task is to get the next character. Apart from this main
purpose, getch also

1. Recognizes and suppresses line end information.
2. Copies the input onto the output file, thus generating a program listing.
3. Prints a line number or location counter at the beginning of each line.

The scanner constitutes the necessary one-symbol lookahead. Moreover,
the auxiliary procedure getch represents an additional lookahead of one

SEC. 5.8 A PARSER FOR PL/0 313

character. Therefore, the total lookahead of this compiler is one symbol
plus one character.

The details of these routines are evident from Program 5.4 which rep-
resents the complete parser for PL/0. In fact, this parser is already extended
in the sense that it collects the declared identifiers denoting constants,
variables, and procedures in a table. The occurrence of an identifier within
a statement then causes a search of this table to determine whether or not
the identifier had been properly declared. The lack of such a declaration may
duly be regarded as a syntactic error since it is a formal error in the composi-
tion of the program text because of the use of an “illegal” symbol. The fact
that this error can only be detected by retaining information in a table is a
consequence of the inherent context dependence of the language, manifest
in the rule that all identifiers have to be declared in the appropriate context.
Indeed, practically all programming languages are context sensitive in this
sense; nevertheless, the context-free syntax is a most helpful model for
these languages and greatly aids in the systematic construction of their
recognizers. The framework thus obtained can then very easily be extended
to take care of the few context sensitive elements of the language, as wit-
nessed by the introduction of the identifier table in the present parser.

Before constructing the individual parser procedures corresponding to
the individual syntax graphs, it is useful to determine how these graphs
depend on each other. To this end, a so-called dependence diagram is con-
structed; it displays the relationships of the individual graphs, i.e., it lists
for each graph G all those graphs G, . .. G, in terms of which G is defined.
Correspondingly, it shows those procedures that will be called by other
procedures. The dependence graph for PL/0 is shown in Fig. 5.5.

program

statement

condition
expression

Fig. 5.5 Dependence diagram for PL/0.

314 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

The loops in Fig. 5.5 indicate instances of recursion. It is therefore
essential that a language in which the PL/0 compiler is implemented is not
burdened by prohibition of recursion. In addition, the dependence diagram
also allows drawing conclusions on the hierarchical organization of the
parser program. For instance, all routines may be contained in (be declared
local to) the routine that parses the construct {program) (which is therefore
the main program part of the parser). Furthermore, all routines below
{block> may be defined locally to the routine representing the parsing goal
{block>. Naturally, all of these routines call upon the scanner getsym,
which in turn calls upon getch.

Program 5.4 PL/O Parser.

program PLO (input, output);
{PL/0 compiler, syntax analysis only}

label 99;

const norw = 11; {no. of reserved words}
txmax = 100; {length of indentifier table}
nmax = 14; {max. no of digits in numbers}
al = 10; {length of identifiers}

type symbol =

(nul, ident, number, plus, minus, times, slash, oddsym,

eql, neq, Iss, leq, gtr, geq, Iparen, rparen, comma, semicolon,
period, becomes, beginsym, endsym, ifsym, thensym,
whilesym, dosym, callsym, constsym, varsym, procsym);
alfa = packed array [1 .. al] of char;

object = (constant, variable, procedure);

var ch: char; {last character read}
sym: symbol, {last symbol read}
id: alfa; {last identifier read}
num: integer, {last number read}
cc: integer, {character count}
Il: integer; {line length}

kk: integer;
line: array [1 .. 81] of char;
a: alfa;
word: array [1 .. norw] of alfa;
wsym: array [1 . . norw] of symbol;
ssym: array [char] of symbol,;
table: array [0 .. txmax] of

record name: alfa;

kind: object
end ;

procedure error (n: integer);
begin writeln (' ":cc, '1’, n:2); goto 99
end {error} ;
procedure getsym;
var i,j,k: integer;
procedure getch;
begin if cc = I/ then
begin if eof (input) then
begin write (PROGRAM INCOMPLETE'); goto 99
end ;
Il := 0; cc := 0; write(" ');
while —eoln(input) do
begin I/ := ll+1; read(ch); write(ch); line[ll] := ch

end ;
writeln; Il := ll+1; read(line[ll])
end ;
cc := cc+1; ch := linelcc]

end {gerch} ;
begin {getsym}
while ch = ' ' do getch;
if chin['A’..’Z'] then
begin {identifier or reserved word} k := 0;
repeat if &k << al then
begin k := k—+1; alk] := ch
end ;
getch
until —(ch in ['A’..’Z',’0".."'9']);
if Kk > kk then kk := k else

repeat alkk] := ' '; kk := kk—1
until kk = k;
id:= a;i:=1;j:= norw;

repeat k := (i+)) div 2;
if id << word[k] thenj := k—1;
if id > word[k] theni := k-1
until i > j;
if i—1 > j then sym := wsymlk] else sym := ident
end else
if chin['0"..’9’] then
begin {number} k := 0; num := 0; sym := number;
repeat num :—= 10xnum ~+ (ord(ch)—ord('0"));
k := k-+1; getch
until —(ch in['0"..'9]);
if Kk > nmax then error (30)
end else
Program 5.4 (Continued)

315

LANGUAGE STRUCTURES AND COMPILERS

if ch = '’ then

begin getch;
if ch = "=’ then
begin sym := becomes; getch
end else sym := nul,
end else
begin sym := ssym|[ch]; getch
end

end {getsym} ;

procedure block (tx: integer);

procedure enter (k: object);
begin {enter object into table}
tx = tx + 1;
with table[tx] do
begin name := id; kind := k;
end
end {enter} ;

function position (id: alfa): integer;
var i: integer;
begin { find identifier id in table}
table[Ol.name := id; i := tx;
while table[il.name #= iddoi := i—1;
position ;= i
end { position} ;
procedure constdeclaration;
begin if sym = ident then
begin getsym;
if sym = eql then
begin getsym;
if sym = number then
begin enter (constant); getsym
end
else error (2)
end else error (3)
end else error (4)
end {constdeclaration} ;

procedure vardeclaration;

begin if sym = ident then
begin enter (variable); getsym
end else error (4)

end {vardeclaration} ;

Program 5.4 (Continued)

CHAP. 5

procedure statement ;
var i: integer;
procedure expression;
procedure term;
procedure factor;
var i: integer;
begin
if sym = ident then
begin i := position(id);
if i = O then error (11) else
if table[i] .kind = procedure then error (21);
getsym
end else
if sym = number then
begin getsym
end else
if sym = Iparen then
begin getsym; expression;
if sym = rparen then getsym else error (22)
end
else error (23)
end { factor} ;
begin {term} factor;
while sym in [times, slash] do
begin getsym; factor
end
end {trerm} ;
begin {expression}
if sym in [plus, minus] then
begin getsym; term
end else term;
while sym in [plus, minus] do
begin getsym; term
end
end {expression} ;
procedure condition;
begin
if sym = oddsym then
begin getsym; expression
end else
begin expression;
if —(sym in [eql, neq, Iss, leq, gtr, geq]) then
error (20) else
begin getsym; expression
end
end
end {condition} ;

begin {statement}
if sym = ident then
begin i := position(id);
if i = O then error (11) else
if table [i] .kind = variable then error (12);
getsym; if sym = becomes then getsym else error (13);
expression
end else
if sym = callsym then
begin getsym;
if sym == ident then error (14) else
begin i := position(id);
if i = 0 then error (11) else
if table[i] .kind # procedure then error (15);
getsym
end
end else
if sym = ifsym then
begin getsym; condition;
if sym = thensym then getsym else error (16);
Statement ,
end else
if sym = beginsym then
begin getsym; statement;
while sym = semicolon do
begin getsym; statement
end ;
if sym = endsym then getsym else error (17)
end else
if sym = whilesym then
begin getsym; condition;
if sym = dosym then getsym else error (18);
Statement
end
end {statement} ;

begin {block}
if sym = constsym then
begin getsym; constdeclaration;
while sym = comma do
begin getsym; constdeclaration
end ;
if sym = semicolon then getsym else error (5)
end ;

Program 5.4 (Continued)

318

if sym = varsym then
begin getsym; vardeclaration;
while sym = comma do
begin getsym; vardeclaration
end ;
if sym
end ;
while sym
begin getsym;
if sym = ident then

procsym do

begin enter (procedure); getsym

end
else error (4);
if sym
block (tx);

semicolon then getsym else error (5)

semicolon then getsym else error (5);

if sym = semicolon then getsym else error (5);

end ;
statement
end {block} ;

begin {main program}

for ch := 'A’ to’;’ do ssym[ch] := nul,

word[1] := 'BEGIN *; word[2] := ‘CALL S
word[3] := 'CONST; word[4] := ‘DO i
word[5] := 'END '; word[6] := "IF -
word[7] := 'opb '; word[8] := 'PROCEDURE';
word[9] := 'THEN word[10] := 'VAR -
word[11] := 'WHILE *;

wsym[1] := beginsym; wsym| 2] := callsym;
wsym[3] := constsym; wsym[4] := dosym;
wsym[5] := endsym; wsym[6] := ifsym;
wsym[7] := oddsym; wsym| 8] := procsym;
wsym[9] := thensym; wsym[l10] := varsym;
wsym[11] := whilesym;

ssym['+'1 := plus; ssym['—'] := minus;
ssym['*’] := times; ssym['['] := slash;
ssym['('] := Iparen; ssym[')'] := rparen;
ssym['="] 1= eql, ssym[',"] := comma;
ssym['."] := period, ssym['£'] := neq;

ssym[' <] := Iss; ssym['>'] := gtr;
ssym['<'] := legq; ssym['>'] 1= geq;

ssym[’;'] := semicolon;

page(output);

cc:=0; Ul := 0; ch:=""; kk := al; getsym;

block (0);

if sym = period then error (9);
99: writeln
end .

320 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

5.9. RECOVERING FROM SYNTACTIC ERRORS

Up to this point the parser had only the modest task of determining
whether or not an input sequence of symbols belonged to a language. As
a side product, the parser also discovered the inherent structure of a sen-
tence. But as soon as an ill-formed construct was encountered, the parser’s
task was achieved, and the program could as well terminate. For practical
compilers, this is of course no tenable proposition. Instead, a compiler must
issue an appropriate error diagnostic and be able to continue the parsing
process—probably to find further mistakes. A continuation is only possible
either by making some likely assumption about the nature of the error and
the intention of the author of the ill-formed program or by skipping over
some subsequent part of the input sequence, or both. The art of choosing
an assumption with a high likelihood of correctness is rather intricate. It has
so far eluded any kind of successful formalization because formalizations
of syntax and parsing do not take into account the many factors that strongly
influence the human mind. For instance, it is a common error to omit inter-
punctuation symbols such as the semicolon (not only in programming!),
whereas it is highly improbable that one forgets to write a -+ operator in an
arithmetic expression. The semicolon and plus symbol are merely terminal
symbols without further distinction for the parser; for the human pro-
grammer, the semicolon has hardly a meaning and appears redundant at
the end of a line, whereas the significance of an arithmetic operator is
obvious beyond doubt. There are many more such considerations that
have to go into the design of an adequate recovery system, and they all
depend on the individual language and cannot be generalized in the frame-
work of all context-free languages.

Nevertheless, there are some rules and hints that can be postulated and
that have validity beyond the scope of a single language such as PL/0.
Characteristically, perhaps, they are concerned equally much with the initial
conception of a language as with the design of the recovery mechanism of
its parser. First of all, it is abundantly clear that sensible recovery is much
facilitated, or even made possible, only by a simple language structure. In
particular, if upon diagnosing an error some part of the subsequent input
is to be skipped (ignored), then it is mandatory that the language contains
key words that are highly unlikely to be misused, and that may therefore
serve to bring the parser back into step. PL/0 notably follows this rule: every
structured statement begins with an unmistakable keyword such as begin,
if, while, and the same holds for declarations; they are headed by var, const,
or procedure. We shall therefore call this rule the keyword rule.

The second rule concerns the construction of the parser more directly.
It is the characteristic of top-down parsing that goals are split up into

SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS 321

subgoals and that parsers call upon other parsers to tackle their subgoals.
The second rule specifies that if a parser detects an error, it should not merely
refuse to continue and report the happening back to its master parser.
Instead, it should itself continue to scan text up to a point where some
plausible analysis can be resumed. We shall therefore call this the don’t
panic rule. The programmatic consequence of this rule is that there will be
no exit from a parser except through its regular termination point.

A possible strict interpretation of the don’t panic rule consists of skipping
input text upon detecting an illegal formation up to the next symbol that may
correctly follow the currently parsed sentential construct. This implies that
every parser know the set of its follow-symbols at the place of its present
activation.

In the first refinement (or enrichment) step we shall therefore provide
every parsing procedure with an explicit parameter fsys that specifies the pos-
sible follow-symbols. At the end of each procedure an explicit test is included
to verify that the next symbol of the input text is indeed among those follow-
symbols (if this condition is not already asserted by the logic of the program).

It would, however, be very shortsighted of us to skip the input text up
to the next occurrence of such a follow-symbol under all circumstances.
After all, the programmer may have mistakenly omitted exactly one symbol
(say a semicolon); ignoring the entire text up to the next follow-symbol may
be disastrous. We therefore augment these sets of symbols that terminate
a possible skip by keywords that specifically mark the beginning of a con-
struct not to be overlooked. The symbols passed as parameters to the parsing
procedures are therefore stopping symbols rather than follow-symbols only.
We may regard the sets of stopping symbols as being initialized by distinct
key symbols and being gradually supplemented by legal follow-symbols upon
penetration of the hierarchy of parsing subgoals. For flexibility, a general
routine called test is introduced to perform the described verification. This
procedure (5.17) has three parameters:

1. The set s1 of admissible next symbols; if the current symbol is not among
them, an error is at hand.

2. A set s2 of additional stopping symbols whose presence is definitely
an error, but which should in no case be ignored and skipped.

3. The number » of the pertinent error diagnostic.

procedure fest (s1, s2: symset; n: integer);
begin if —(sym in s1) then

begin error(n); sl := sl+4s2; (5.17)
while —(sym in s1) do getsym)
end

end

322 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Procedure (5.17) may also be conveniently used at the entrance of parsing
procedures to verify whether or not the current symbol is an admissible
initial symbol. This is recommended in all cases in which a parsing procedure
X is called unconditionally, such as in the statement

if sym = a, then S, else

if sym = a, then S, else X
which is the result of translation of the production
A= a,8]...]a,S,| X (5.18)

In these instances the parameter s1 must be equal to the set of initial symbols
of X, whereas 52 is chosen as the set of the follow-symbols of 4 (see Table
5.2). The details of this procedure are given in Program 5.5, which represents
the enriched version of Program 5.4. For the reader’s convenience, the entire
parser is listed again, with the exception of initializations of global variables
and of the procedure getsym, all of which remain unchanged.

The scheme presented so far has the property of trying to recover, to fall
back into step, by ignoring one or more symbols in the input text. This is
an unfortunate strategy in all cases in which an error is caused by omission
of a symbol. Experience shows that such errors are virtually restricted to
symbols which have merely syntactic functions and do not represent an ac-
tion. An example is the semicolon in PL/0. The fact that the follow-symbol sets
are augmented by certain key words actually causes the parser to stop skip-
ping symbols prematurely, thereby behaving as if a missing symbol had been
inserted. This can be seen from the program part that parses compound state-
ments shown in (5.19). It effectively “inserts” missing semicolons in front of
key words. The set called statbegsys is the set of initial symbols of the con-
struct “statement.”

if sym = beginsym then
begin getsym;
statement([semicolon, endsym]-+fsys);
while sym in [semicolon]+statbegsys do
begin
if sym = semicolon then getsym else error;
statement([semicolon, endsym]-+fsys)
end;
if sym = endsym then getsym else error
end

(5.19)

The degree of success with which this program diagnoses syntactic errors
and recovers from unusual situations can be estimated by considering the
PL/0 program (5.20). The listing represents an output delivered by Program

SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS 323

——»! statement lL end
O

Fig. 5.6 Modified compound statement syntax.

1. Use = instead of :=.
2. = must be followed by a number.
3. Identifier must be followed by =.
4. const, var, procedure must be followed by an identifier.
5. Semicolon or comma missing.
6. Incorrect symbol after procedure declaration.
7. ' Statement expected.
8. Incorrect symbol after statement part in block.
9. Period expected.
10. Semicolon between statements is missing.
11. Undeclared identifier.
12. Assignment to constant or procedure is not allowed.
13. Assignment operator := expected.
14. call must be followed by an identifier.
15. Call of a constant or a variable is meaningless.
16. then expected.
17. Semicolon or end expected.
18. do expected.
19. Incorrect symbol following statement.
20. Relational operator expected.
21. Expression must not contain a procedure identifier.
22. Right parenthesis missing.
23. The preceding factor cannot be followed by this symbol.
24. An expression cannot begin with this symbol.
30. This number is too large.

Table 5.3 Error Messages of PL/0 Compiler.

5.5, and Table 5.3 lists a set of possible diagnostic messages corresponding
to the error numbers in Program 5.5.

The following program (5.20) was obtained by the introduction of
syntactic errors in (5.14) through (5.16).

const m = 7, n = 85
var x,y,2,q,r;
t5
T5
procedure multiply;
var a,b

324 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5
begina := u; b:= y; z:= 0

TS5
111
while » > 0 do
110
begin
ifoddbdoz := z + a;
116
119
a:= 2a; b := b2,
123
end
end ;
procedure divide
var w;
5
const two = 2, three := 3;
T 7
!
beginr = x; g := 0; w := y; (5.20)
113
124
while w << rdo w := twoxw;
whilew > y
begin g := (2xq; w := w/2);
118
122
123
if w < r then
beginr := r—w q := g+1
123
end
end
end ;
procedure gcd;
var f,g;
beginf := x; g ==y
while f = g do
117
begin if f < g theng := g—f;
ifg < fthenf := f—g;
z:=f

end ;

SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS 325

begin
x := m; y = n; call multiply;
x := 25; y := 3; call divide;
x := 84; y := 36; call gcd,
call x; x := gcd, gca’ =X

115
121
112
113
124
end .

117

5

™7

PROGRAM INCOMPLETE

It should be clear that no scheme that reasonably efficiently translates
correct sentences will also be able to handle all possible incorrect con-
structions in a sensible way. And why should it! Every scheme implemented
with reasonable effort will fail, that is, will inadequately handle some mis-
constructions. The important characteristics of a good compiler, however,
are that

1. No input sequence will cause the compiler to collapse.

2. All constructs that are illegal according to the language definition are
detected and marked.

3. Errors that occur reasonably frequently and are true programmer’s
mistakes (caused by oversight or misunderstanding) are diagnosed
correctly and do not cause any (or many) further stumblings of the
compiler (so-called spurious error messages).

The presented scheme performs satisfactorily, although there is always
room for improvement. Its merit is that it is built according to a few ground
rules in a systematic fashion. The ground rules are merely supplemented by
some choices of parameters based on heuristics and experience with actual
use of the language.

Program 5.5 PL/0 Parser with Error Recovery.

program PLO (input ,output);
{PL/O compiler with syntax error recovery}

label 99;

const norw = 11; {no. of reserved words}
txmax = 100; {length of identifier table}
nmax = 14; {max. no. of digits in numbers}
al = 10; {length of identifiers}

type symbol =

(nul, ident, number, plus, minus, times, slash, oddsym,

eql, neq, Iss, leq, gtr, geq, Iparen, rparen, comma, semicolon,
period, becomes, beginsym, endsym, ifsym, thensym,
whilesym, dosym, callsym, constsym, varsym, procsymy;
alfa = packed array [1 .. al] of char;

object = (constant, variable, procedure);

symset = set of symbol;

var ch: char; {last character read}
sym: symbol,; {last symbol read}
id: alfa; {last identifier read}
num: integer; {last number read}
cc: integer; {character count}
Il: integer; {line length}

kk: integer;
line: array [1 .. 81] of char;
a: alfa;
word: array [1 .. norw] of alfa;
wsym: array [1 .. norw] of symbol;
ssym: array [char] of symbol,;
declbegsys, statbegsys, facbegsys: symset;
table: array [0 . . txmax] of
record name: alfa;
kind: object
end ;
procedure error (n: integer);
begin writeln(' ':cc, ', n: 2);
end {error} ;
procedure test (s1,52: symset; n: integer);
begin if —(sym in s1) then
begin error(n); sl := sl + s2;
while —(sym in s1) do getsym
end
end {test} ;

326

SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS

procedure block (tx: integer; fsys: symset);
procedure enter (k: object);
begin {enter object into table}
tx ;= tx + 1;
with zable[tx] do
begin name = id; kind := k;
end
end {enter} ;
function position (id: alfa): integer;
var i: integer;
begin { find identifier id in table}
table[0] .name = id; i := tx;
while table[i] .name = iddoi := i—1;
position := i
end { position} ;

procedure constdeclaration;
begin if sym = ident then
begin getsym;
if sym in [eql, becomes] then
begin if sym = becomes then error (1);
getsym;
if sym = number then
begin enter (constant); getsym
end
else error (2)
end else error (3)
end else error (4)
end {constdeclaration} ;

procedure vardeclaration;
begin if sym = ident then
begin enter (variable); getsym
end else error (4)
end {vardeclaration} ;
procedure statement (fsys: symset);
var i: integer;
procedure expression (fsys: symset);
procedure term (fsys: symset);
procedure factor (fsys: symset);
var i: integer;
Program 5.5 (Continued)

327

begin test (facbegsys, fsys, 24);
while sym in facbegsys do
begin
if sym = ident then
begin i := position (id);
if i = O then error (11) else
if tableli] .kind = procedure then error (21);
getsym
end else
if sym = number then
begin getsym;
end else
if sym = Iparen then
begin getsym; expression ([rparen]-+fsys);
if sym = rparen then getsym else error (22)
end ;
test(fsys, [Iparen], 23)
end
end { factor} ;
begin {term} factor (fsys-|times, slash]);
while sym in [times, slash] do
begin getsym; factor(fsys+[times, slash])
end
end {term} ;
begin {expression}
if sym in [plus ,minus] then
begin getsym; term(fsys+[plus, minus])
end else term(fsys+[plus, minus));
while sym in [plus, minus] do
begin getsym; term(fsys+[plus, minus])
end
end {expression} ;
procedure condition(fsys: symset);
begin
if sym = oddsym then
begin getsym; expression(fsys);
end else
begin expression ([eql, neq, Iss, gtr, leq, geql+fsys);
if —(sym in [eql, neq, Iss, leq, gtr, geq]) then
error (20) else
begin getsym; expression (fsys)
end
end
end {condition} ;
Program 5.5 (Continued)

328

SEC. 5.9 RECOVERING FROM SYNTACTIC ERRORS

begin {statement}
if sym = ident then
begin i := position(id);
if i = O then error (11) else
if tableli] .kind + variable then error (12);
getsym; if sym = becomes then getsym else error (13);
expression(fsys);
end else
if sym = callsym then
begin getsym;
if sym = ident then error (14) else
begin i := position(id);
if i = 0 then error (11) else
if tableli] .kind = procedure then error (15);
getsym
end
end else
if sym = ifsym then
begin getsym; condition ([thensym, dosym]+fsys);
if sym = thensym then getsym else error (16);
statement(fsys)
end else
if sym = beginsym then
begin getsym; statement([semicolon, endsym]+fsys);
while sym in [semicolon]+statbegsys do
begin
if sym = semicolon then getsym else error (10);
statement([semicolon ,endsym)+fsys)
end ;
if sym = endsym then getsym else error (17)
end else
if sym = whilesym then
begin getsym; condition([dosym]+fsys);
if sym = dosym then getsym else error (18);
statement(fsys);
end ;
test(fsys, [], 19)
end {statement} ;

Program 5.5 (Continued)

329

begin {block}

repeat
if sym = constsym then
begin getsym;

repeat constdeclaration;
while sym = comma do
begin getsym; constdeclaration
end ;
if sym = semicolon then getsym else error (5)
until sym = ident
end ;
if sym = varsym then
begin getsym;
repeat vardeclaration;
while sym = comma do
begin getsym; vardeclaration
end ;
if sym = semicolon then getsym else error (5)
until sym = ident;
end ;
while sym = procsym do
begin getsym;
if sym = ident then
begin enter (procedure); getsym
end
else error (4);
if sym = semicolon then getsym else error (5);
block (tx, [semicolon]+fsys);
if sym = semicolon then
begin getsym; test(statbegsyslident, procsym], fsys, 6)
end
else error (5)
end ;
test (statbegsys-lident], declbegsys, 7)
until —(sym in declbegsys);
statement([semicolon, endsym]—+fsys);
test(fsys, [], 8);
end {block} ;
begin {main program}
... Initialization (see Program 5.4) . ..
cc:=0; Il := 0; ch:=""; kk := al; getsym;
block (0, [period]+declbegsysstatbegsys);
if sym £ period then error (9);
99: writeln
end .

sec. 5.10 A PL/0 PROCESSOR 331

5.10. A PL/0 PROCESSOR

It is indeed remarkable that the PL/0 compiler was so far developed
without any knowledge of the machine for which it was supposed to generate
code. But why should the structure of an object machine influence the parsing
and error recovery scheme of a compiler! In fact, it must not do so. Instead,
the proper scheme for code generation for any computer should be super-
imposed on the existing parser by the method of stepwise refinement of the
existing program. Since we are about to do this, it becomes necessary to
select a processor for which to compile.

In order to keep the description of the compiler reasonably simple and
free from extraneous considerations of peculiar properties of a real, existing
processor, we shall postulate a computer of our own choice, specifically
tailored to the needs of PL/0. Since this processor does not really exist (in
hardware), it is a hypothetical processor; it will be called the PL/0 machine.

It is not the aim of this section to explain the detailed reasoning that
led to the choice of exactly this kind of machine architecture. Instead,
it is to serve as a descriptive manual consisting of an intuitive introduction,
followed by a detailed definition of the processor in the form of an algorithm.
This formalization may serve as an example for accurate and detailed
algorithmic descriptions of actual processors. The algorithm interprets
PL/0 instructions sequentially, and is called an interpreter.

The PL/0 machine consists of two stores: an instruction register and
three address registers. The program store, called code, is loaded by the
compiler and remains unchanged during interpretation of the code. It can
then be considered as a read-only store. The data store S is organized as a
stack, and all arithmetic operators operate on the two elements on top of
the stack, replacing their operands by a result. The top element is addressed
(indexed) by the top stack register T. The instruction register I contains the
instruction that is currently being interpreted. The program address register
P designates the next instruction to be fetched for interpretation.

Every procedure in PL/0 may contain local variables. Since procedures
may be activated recursively, storage for these local variables may not be
allocated before the actual procedure call. Hence, the data segments for
individual procedures are stacked up consecutively in the stack store S.
Since procedure activations strictly obey the first-in-last-out scheme, the
stack is the appropriate storage allocation strategy. Every procedure owns
some internal information of its own, namely, the program address of its
call (the so-called return address), and the address of the data segment of its
caller. These two addresses are needed for proper resumption of program
execution after termination of the procedure. They can be understood as
internal or implicit local variables allocated in the procedure’s data segment.

332 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

We call them the return address RA and the dynamic link DL. The origin of
the dynamic link, that is, the address of the most recently allocated data
segment, is retained in the base address register B.

Since the actual allocation of storage takes place during execution
(interpretation) time, the compiler cannot equip the generated code with
absolute addresses. Since it can only determine the location of variables
within a data segment, it is capable of providing relative addresses only. The
interpreter has to add to this so-called displacement to the base address of
the appropriate data segment. If a variable is local to the procedure cur-
rently being interpreted, then this base address is given by the B register.
Otherwise, it must be obtained by descending the chain of data segments.
The compiler, however, can only know the static depth of an access path,
whereas the dynamic link chain maintains the dynamic history of procedure
activations. Unfortunately, these two access paths are not necessarily the
same.

For example, assume that a procedure A calls a procedure B declared
local to A, B calls C declared local to B, and C calls B (recursively). We say
that A4 is declared at level 1, B at level 2, C at level 3 (see Fig. 5.7). If a
variable a declared in A is to be accessed in B, then the compiler knows
that there exists a level difference of 1 between B and A. Descending one
step along the dynamic link chain, however, would result in an access to a
variable local to C!

DL RA SL

variables local
to A

variables local
to B

— [|

variables local

to C
B — [|
variables local
to B
T[]
e W P e e

Fig. 5.7 Stack of PL/0 machine.

SEC. 5.10 A PL/0 PROCESSOR 333

Hence, it is plain that a second link chain has to be provided that properly
links data segments in the way the compiler can see the situation. We call
this the static link SL.

Addresses are therefore generated as pairs of numbers indicating the
static level difference and the relative displacement within a data segment.
We assume that each location of the data store is capable of holding an
address or an integer.

The instruction set of the PL/0 machine is tuned to the requirements of
the PL/0 language. It includes the following orders:

. An instruction to load numbers (literals) onto the stack (LIT).

. An instruction to fetch variables onto the top of the stack (LOD).

. A store instruction corresponding to assignment statements (STO).

. An introduction to activate a subroutine corresponding to a procedure

call (CAL).

5. An instruction to allocate storage on the stack by incrementing the
stack pointer T (INT).

6. Instructions for unconditional and conditional transfer of control, used
in if- and while statements (JMP, JPC).

7. A set of arithmetic and relational operators (OPR).

HW N -

The format of instructions is determined by the need for three com-
ponents, namely, an operation code f and a parameter consisting of one
or two parts (see Fig. 5.8). In the case of operators the parameter a determines
the identity of the operator; in the other cases it is either a number (LIT,
INT), a program address (JMP, JPC, CAL), or a data address (LOD, STO).

flef e |
L Fig. 5.8 Instruction format.

The details of operation of the PL/0 machine should be evident from the
procedure called interpret that is part of Program 5.6, which combines the
completed compiler with the interpreter into a system that translates and
subsequently executes PL/0 programs. The modification of this program to
generate code for an existing computer is left as an excercise for the interested
reader. The resulting expansion of the compiler program may be taken as a
measure of the appropriateness of the chosen computer for the present task.

There is no doubt that the presented PL/0 computer could be expanded
into a more sophisticated organization in order to make certain operations
more efficient. One instance is the chosen addressing mechanism. The
presented solution was chosen because of its inherent simplicity and because
all improvements must essentially be based on it and derived from it.

334 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

5.11. CODE GENERATION

In order to be able to assemble an instruction, the compiler must know
its operation code and its parameter, which is a literal number or an address.
These values are associated by the compiler itself with the respective iden-
tifiers. This association is performed upon processing the declaration of
constants, variables, and procedures. For this purpose, the table containing
the identifiers is expanded to contain the attributes associated with each
identifier. If an identifier denotes a constant, its attribute is the constant
value; if the identifier denotes a variable, the attribute is its address, consist-
ing of a displacement and a level; and if the identifier denotes a procedure,
then its attributes are the procedure’s entry address and its level. The cor-
responding extension of the declaration of the variable table is shown in
Program 5.6. It is a noteworthy example of a stepwise refinement (or enrich-
ment) of a data declaration progressing simultaneously with the refinement
of the statement part.

Whereas the constant values are provided by the program text, it is the
compiler’s task to determine addresses on its own. PL/0 is sufficiently simple
to make sequential allocation of variables and code the obvious choice.
Hence, every variable declaration is processed by incrementing a data
allocation index by 1 (since each variable occupies by definition of the PL/0
machine exactly one storage cell). The data allocation index dx is to be
initialized upon starting the compilation of a procedure, reflecting the fact
that its data segment starts empty. [Actually, dx is given the initial value 3
since each data segment contains at least the three internal variables RA,
DL, SL (see preceding section).] The appropriate computations to determine
the identifiers’ attributes are included in the procedure enter which is used
to enter new identifiers into the table.

With this information about operands at hand, generating the actual
code is a rather simple affair. Because of the convenient stack organization
of the PL/0 machine, there exists practically a one-to-one correspondence
between operands and operators in the source language and instructions in
the target code. The compiler has merely to perform a suitable resequencing
into postfix form. By “postfix form” is meant that operators always follow
their operands instead of being embedded between the operands as in the
conventional infix form. The postfix form is sometimes also called Polish
form (after its originator Lukasciewicz) or parenthesis-free form since it
makes parentheses superfluous. Some correspondences between infix and
postfix forms of expressions are shown in Table 5.4 (see also Sect. 4.4.2).

The very simple technique of performing this transformation is shown by
the procedures expression and term in Program 5.6. It is merely a matter

SEC. 5.11 CODE GENERATION 335

Infix Form Postfix Form
x+y xy+
x—y)+z xy —z+
x—(+2) xyz+—
xx(y + 2)xw Xyz + *xw+

Table 5.4 Expressions in Infix and Postfix Form.

of delaying the transmission of the arithmetic operator. At this point the
reader should verify that the presented arrangement of parsing procedures
also takes care of an appropriate interpretation of the conventional priority
rules among the various operators.

A slightly less trivial matter is the translation of conditional and repeti-
tive statements. In this case the generation of jump instructions is necessary,
for which at times the destination address is still unknown. If one insists on
a strictly sequential production of instructions in the form of an output file,
then a two-pass compiler scheme is necessary. The second pass then assumes
the task of supplementing the incomplete jump instructions with their
destination addresses. An alternative solution adopted by the present com-
piler is to place the instructions into an array and essentially retaining them
in directly accessible store. This method allows supplementing the missing
addresses as soon as they become known. This operation is commonly called
a fixup.

The only additional operation that has to be performed when issuing
such a forward jump is to retain its location, i.e., its index in the program
store. This address is then used to locate the incomplete instruction at the
time of the fixup. The details are again evident from Program 5.6 (see routines
processing if- and while statements). The patterns of code generated for the
if- and while statements are as follows (L1 and L2 stand for code addresses):

if C then S while C do S
code for condition C L1: code for C
JPC L1 JPC L2
code for statement .S code for S
Li: ... JMP L1
L2:

For convenience, an auxiliary procedure called gen is introduced. Its
purpose is to assemble and emit an instruction according to its three pa-
rameters. It automatically increments the code index cx which designates the
location of the next instruction to be issued.

336 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

As an example, the code emitted by compiling the multiplication routine
(5.14) is listed below in mnemonic form. The comments on the right-hand
side are merely added for explanatory purposes.

2 INT 0,5 allocate space for links and local variables
3 LOD 1,3 X
4 STO 0,3 a
5 LoD 14y
6 STO 0,4 b
7 LIT 0,0 0
8 STO 1,5 z
9 LOD 0,4 b
10 LIT 0,0 0
11 OPR 0,12 >

12 JPC 0,29
13 LOD 0,4
14 OPR 0,7 odd
15 JPC 0,20
16 LOD 1,5
17 LOD 0,3
18 OPR 0,2
19 STO 1,5
20 LIT 0,2
21 LOD 0,3
22 OPR 0,4
23 STO 0,3
24 LOD 0,4
25 LIT 0,2
26 OPR 0,5
27 STO 0,4
28 JMP 0,9
29 OPR 0,0 return

Code corresponding to PL/0 procedure 5.14.

(S

Q'\NO'Q*QNN_i_QN

Many tasks in compiling programming languages are considerably more
complex than the ones presented in the PL/0 compiler for the PL/O machine
[5-4]. Most of them are much more resistant to being neatly organized.
The reader trying to extend the presented compiler in either direction toward
a more powerful language or a more conventional computer will soon
realize the truth of this statement. Nevertheless, the basic approach toward
designing a complex program presented here retains its validity, and even
increases its value when the task grows more complicated and more sophis-
ticated. It has, in fact, been successfully used in the construction of large
compilers [5-1 and 5-9].

SEC. 5.11

CODE GENERATION

Program 5.6 PL/0 Compiler.

program PLO(input,output);
{PL|O compiler with code generation}

label 99;

const norw = 11;
txmax = 100;
nmax = 14;
al = 10;
amax = 2047,

levmax = 3;
cxmax = 200;
type symbol =

{no. of reserved words}

{length of identifier table}

{max. no. of digits in numbers}
{length of identifiers}

{maximum address}

{maximum depth of block nesting}
{size of code array}

(nul, ident, number, plus, minus, times, slash, oddsym,
eql, neq, Iss, leq, gtr, geq, Iparen, rparen, comma, semicolon,
period, becomes, beginsym, endsym, ifsym, thensym,
whilesym, dosym, callsym, constsym, varsym, procsym);
alfa = packed array [l . . al] of char;

object = (constant, variable, procedure);

symset = set of symbol;

fet = (lit, opr, lod, sto, cal, int, jmp, jpc); { functions}
instruction = packed record

I fet; { function code}
1: 0..levmax; {level}
a: 0..amax; {displacement address}

end ;
{ ur O0,a : load constant a
opPr0,a : execute operation a
Loo La : load variable l,a
sto la : store variable l,a
caL La : call procedure a at level |
INT O,a : increment t-register by a

JMmp O,a @ jump toa
Jec O,a @ jump conditional toa '}

var ch: char;
sym: symbol;
id: alfa;
num: integer;
cc: integer,
Il: integer;
kk, err: integer;
cx: integer;

{last character read}
{last symbol read}
{last identifier read}
{last number read}
{character count}
{line length}

{code allocation index}

337

338 LANGUAGE STRUCTURES AND COMPILERS

line: array [l .. 81] of char;
a: alfa,
code: array [0 .. cxmax] of instruction;
word: array [l .. norw] of alfa;
wsym: array [l .. norw] of symbol;
ssym: array [char] of symbol,
mnemonic: array [fct] of
packed array [1 . . 5] of char;
declbegsys, statbegsys, facbegsys: symset;
table: array [0 .. txmax] of
record name: alfa;
case kind: object of
constant: (val: integer);
variable, procedure: (level, adr: integer)
end ;
procedure error(n: integer);
begin writeln(’ ****', " ' cc—1, "1, n:2); err := err+1
end {error} ;

procedure getsym;
var i,j,k: integer;

procedure getch;
begin if cc = Il then
begin if eof (input) then
begin write(" PROGRAM INCOMPLETE'); goto 99
end ;
Il := 0; cc := 0; write(cx: 5, " ");
while —eoln(input) do
begin I/l := II+1; read(ch); write(ch); line[ll] := ch

end ;
writeln; Il := l14-1; read(line[ll])
end ;
cc := cc+1; ch := line[cc)

end {getch} ;

begin {getsym}
while ch = ' ' do getch;
if chin['A’..’Z'] then
begin {identifier or reserved word} k := 0;
repeat if & << al then
begin k := k-+1; alk] := ch
end ;

Program 5.6 (Continued)

CHAP. 5

getch
until —(chin ['A’..'Z')0"..'9]);
if Kk > kk then kk := k else
repeat alkk] := ' '; kk := kk—1
until kk = k;
id:= a; i:=1;j:= norw,
repeat k := (i+)) div 2;
if id < word[k] thenj := k—1;
if id > word[k] then i := k-1
until i > j;
ifi—1 > jthen sym := wsyml[k] else sym := ident
end else
if chin['0"..'9] then
begin {number} k := 0; num := 0; sym := number;
repeat num := 10xnum + (ord(ch)—ord('0));
k := k+1; getch
until —(ck in['0"..'9);
if Kk > nmax then error (30)
end else
if ch = ’:’ then
begin getch;
if ch = '="then
begin sym := becomes; getch
end else sym := nul;
end else
begin sym := ssym|ch]; getch
end
end {getsym} ;

procedure gen(x: fct; y,z: integer);
begin if cx > cxmax then
begin write(" PROGRAM TOO LONG’); goto 99
end ; ‘
with code[cx] do
beginf := x; [:= y; a:=z
end ;
ex = c¢cx + 1
end {gen} ;
procedure fest(sl,s2: symset; n: integer);
begin if —(sym in s1) then
begin error(n); sl := sl + s2;
while —(sym in s1) do getsym
end
end {rest} ;

Program 5.6 (Continued)

339

procedure block(lev,tx: integer; fsys: symset);
var dx: integer; {data allocation index}
tx0: integer; {initial table index}
cx0: integer; {initial code index}
procedure enter(k: object);
begin {enter object into table}
tx ;= tx + 1;
with table[tx] do
begin name := id; kind := k;

case k of
constant: begin if num > amax then
begin error (30); num := 0 end ;
val := num
end ;
variable: begin level := lev; adr := dx; dx = dx+1;
end ;
procedure: level := lev
end
end

end {enter} ;

function position(id: alfa): integer;
var i: integer;

begin { find indentifier id in table}

table[0] .name = id; i = tx;
while table[i] .name = iddoi := i—1;
position 1= i

end { position} ;
procedure constdeclaration;
begin if sym = ident then
begin getsym;
if sym in [eql ,becomes] then
begin if sym = becomes then error(1);
getsym,
if sym = number then
begin enter(constant); getsym
end
else error (2)
end else error (3)
end else error (4)
end {constdeclaration} ;
procedure vardeclaration;
begin if sym = ident then
begin enter (variable); getsym
end else error (4)
end {vardeclaration} ;
Program 5.6 (Continued)

SEC. 5.11 CODE GENERATION

procedure /istcode;
var i: integer;
begin {/ist code generated for this block}
for i := cx0to cx—1 do
with code[i] do
writeln(i, mnemonic[f]:5, 1:3, a:5)
end {/istcode} ;

procedure statement (fsys: symset);
var i,cx1l,cx2: integer;
procedure expression(fsys: symset);
var addop: symbol,
procedure term(fsys: symset);
var mulop: symbol,
procedure factor(fsys: symset);
var . integer;
begin rest(facbegsys, fsys, 24);
while sym in facbegsys do
begin
if sym = ident then
begin i := position(id);
if i = O then error (11) else
with table[i] do
case kind of
constant: gen(lit, 0, val);
variable: gen(lod, lev-level, adr);
procedure: error (21)
end ;
getsym
end else
if sym = number then
begin if num > amax then
begin error (30); num := 0
end ;
gen(lit, 0, num); getsym
end else
if sym = Iparen then
begin getsym; expression([rparen]+fsys);
if sym = rparen then getsym else error (22).
end ;
test(fsys, [Iparen], 23)
end
end { factor} ;

Program 5.6 (Continued)

341

342 LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

begin {term} factor (fsys-[times, slash]);
while sym in [times, slash] do
begin mulop := sym; getsym; factor(fsys+[times, slash));
if mulop = times then gen(opr,0,4) else gen(opr,0,5)
end
end {term} ;
begin {expression}
if sym in [plus, minus] then
begin addop := sym; getsym; term(fsys+[plus, minus));
if addop = minus then gen(opr,0,1)
end else term(fsys+|[plus, minusl);
while sym in [plus, minus] do
begin addop := sym; getsym; term(fsys+-[plus, minus));
if addop = plus then gen(opr,0,2) else gen(opr,0,3)
end
end {expression} ;

procedure condition(fsys: symset);
var relop: symbol,;
begin
if sym = oddsym then
begin getsym; expression(fsys); gen(opr,0,6)
end else
begin expression([eql, neq, Iss, gtr, leq, geql+fsys);
if —(sym in [eql, neq, Iss, leq, gtr, geq]) then
error (20) else
begin relop := sym; getsym; expression(fsys);
case relop of
eql: gen(opr,0, 8);
neq: gen(opr,0, 9);
Iss: gen(opr,0,10);
geq: gen(opr,0,11);
gtr: gen(opr,0,12);
leq: gen(opr,0,13);
end
end
end
end {condition} ;

Program 5.6 (Continued)

begin {statement}
if sym = ident then
begin i := position(id);
if i = 0 then error (11) else
if table[i] .kind # variable then

begin {assignment to non-variable} error (12); i := 0
end ;
getsym; if sym = becomes then getsym else error (13);
expression(fsys);

if i = 0 then
with zable[i] do gen(sto, lev-level, adr)

end else
if sym = callsym then
begin getsym;

if sym = ident then error (14) else
begin i := position(id);
if i = 0 then error (11) else
with zable[i] do
if kind = procedure then gen (cal, lev-level, adr)
else error (15);
getsym
end
end else
if sym = ifsym then
begin getsym; condition([thensym, dosym]+fsys);
if sym = thensym then getsym else error (16);
exl = cx; gen(jpc,0,0);
statement (fsys); code[cx1].a := cx
end else
if sym = beginsym then
begin getsym; statement([semicolon, endsym]-fsys);
while sym in [semicolon]+statbegsys do
begin
if sym = semicolon then getsym else error (10);
statement([semicolon, endsym}-+fsys)
end ;
if sym = endsym then getsym else error (17)
end else
if sym = whilesym then
begin cx1 := cx; getsym; condition([dosym]+fsys);
cx2 1= cx; gen(jpc,0,0);
if sym = dosym then getsym else error (18);
statement(fsys); gen(jmp,0,cx1); code[cx2).a := cx
end ;
test(fsys, [1, 19)
end {statement} ;

begin {block} dx := 3; tx0 := tx; table[tx] .adr := cx; gen(jmp,0,0);
if lev > levmax then error (32);

repeat
if sym = constsym then
begin getsym;

repeat constdeclaration;
while sym = comma do
begin getsym; constdeclaration
end ;
if sym = semicolon then getsym else error (5)
until sym £ ident
end ;
if sym = varsym then
begin getsym;
repeat vardeclaration;
while sym = comma do
begin getsym; vardeclaration
end ;
if sym = semicolon then getsym else error (5)
until sym £ ident;
end ;
while sym = procsym do
begin getsym;
if sym = ident then
begin enter(procedure); getsym
end
else error (4);
if sym = semicolon then getsym else error (5);
block(lev+1,tx,[semicolon]+fsys);
if sym = semicolon then
begin getsym; test(statbegsys—lident, procsym), fsys, 6)
end
else error (5)
end ;
test(statbegsys+[ident], declbegsys, T)
until —(sym in declbegsys);
code[table[tx0).adr].a := cx;
with table[tx0] do
begin adr := cx; {start adr of code}
end ;
cx0 := cx; gen(int,0,dx);
statement([semicolon, endsym]+fsys);
gen(opr,0,0); {return}
test(fsys, [1, 8);
listcode;
end {block} ;

procedure interpret;
const stacksize = 500;

var p,b,t: integer { program-, base-, topstack-registers}

i: instruction; {instruction register}

s: array [1 .. stacksize] of integer; {datastore}

function base(l: integer): integer;
var bl: integer;
begin b1 := b; {find base | levels down}
while / > 0 do
begin b1 := s[bl]; [:= [I—1
end ;
base := bl
end {base} ;

begin writeln(" START PL/0');
t:=0;b:=1;p:=0;
s[1] := 0; s[2] := 0; s[3] := O;
repeat i := code[pl; p := p+1;
with i do
case f of
lit: begin t := ¢+41; s[t] := a
end ;
opr: case aof {operator}
0: begin {return}

t:=b—1; p:= s[t+3]; b:

end ;
2 5[] = —s[d;

—

= s[t+2];

2: begin t := t—1; s[f] := s[f} + s[t+1]

end ;

3: begin ¢ := t—1; s[f] := s[f] — s[t+1]

end ;

4: begint := t—1; s|f] ;= s[r] * s[t+1]

end ;

5: begin t := t—1; s[f] := s[] div s[t41]

end ;
6: s[f] := ord(odd(s[t]);

8: begin t := t—1; s[f] := ord(s[t]=s[t+1])

end ;

9: begin t := t—1; s[f] := ord(s[f]~s[t+1])

end ;

10: begin ¢t := t—1; s[f] := ord(s[]<<s[t+1])

end ;

11: begin ¢t := t—1; s[f] := ord(s[{]=>s[t+1])

end ;

Program 5.6 (Continued)

345

12: begin f := t—1; s[f] := ord(s[f]>s[t+1])

end ;
13: begint := t—1; s[f] := ord(s[t]<s[t+1])
end ;
end ;
lod: begin t := t+1; s[tf] := s[base(/)+a]
end ;
sto: begin s[base(l)+a) := s[t]; writeln(s[t]); t == t—1
end ;

cal: begin {generate new block mark}
s[t+1] := base(l); s[t+2] := b; s[t+3] := p;
b:=1t+1l;p:=a
end ;
int: t := t+a;
jmp: p = a;
jpc: beginif s[t] = Othenp := a; t := t—1
end
end {with, case}
until p = 0;
write(" END PL/0’);
end {interpret} ;

begin {main program}
for ch := 'A’ to';’ do ssym[ch] := nul;

word[1] := 'BEGIN’; word[2] := 'CcALL 3
word[3] := 'consT'; word[4] := 'DO 3
word[5] := "eND ; word[6] := “IF 3
word[7] := '‘opbp *; word[8] := 'PROCEDURFE’;
word[9] := 'THEN *; word[10] := 'vAR N
word[11] := 'WHILE";

wsym[1] := beginsym; wsym|[2] := callsym;
wsym[3] := constsym; wsym| 4] := dosym;

wsym[5] := endsym; wsym[6] := ifsym;
wsym[7] := oddsym; wsym| 8] := procsym;

wsym[9] := thensym; wsym[10] := varsym;
wsym[11] := whilesym;

ssym['+'] := plus; ssym['—'] := minus;
ssym['*'] = times; ssym['['l := slash;
ssym['('l := Iparen; ssym[')] := rparen;
ssym['="] 1= eql,; ssym[’,'] := comma,
ssym['."] = period; ssym|'£'] := neq;
ssym['<'] := lIss; ssym['>"] := gtr;
ssym['<'] 1= leq; ssym['>"] := geq;
ssym[';'] := semicolon;

Program 5.6 (Continued)

346

CHAP. 5 EXERCISES 347

mnemonicllit] := ‘LT '; mnemoniclopr] := 'OPR’;
mnemonicllod] := 'LoD'; mnemonic[sto] := 'st0’;
mnemonic[cal]l := 'cAL’'; mnemoniclint] := 'INT *;
mnemonicljmp] := Imp'; mnemonicljpc] = 'Jpc’;
declbegsys := [constsym, varsym, procsym];

statbegsys 1= |beginsym, callsym, ifsym, whilesym];
Jfacbegsys := [ident, number, Iparen];

page(output); err := 0

cc:=0; cx:=0; Il :=0; ch:=""; kk := al; getsym,

block(0,0,] period]+declbegsys-statbegsys);
if sym %= period then error (9);
if err = O then interpret else write(' ERRORS IN PL/O PROGRAM');

99: writeln

end .
Program 5.6 (Continued)

EXERCISES

5.1. Consider the following syntax.
Si=4A4
A ::= B | if A then A else A
B:=C|B+C| +C
C::=D| C«D | D
D:=x || —-D

5.2.

Which are the terminal and the non-terminal symbols? Determine the sets
of leftmost and follow-symbols L(X) and F(X) for each non-terminal symbol
X. Construct a sequence of parsing steps for the following sentences:

xX+x

(x+x)x(+—x)

(x*%—+x)

if x 4 x then x*x else —x

if x then if —x then x else x+x else x*x
if —x then x else if x then x -+ x else x

Does the grammar of Exercise 5.1 satisfy the Restrictive Rules 1 and 2
for one-symbol lookahead top-down parsing? If not, find an equivalent
syntax which does satisfy these rules. Represent this syntax by a syntax
graph and a data stricture to be used by Program 5.3.

348

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

LANGUAGE STRUCTURES AND COMPILERS CHAP. 5

Repeat Exercise 5.2 for the following syntax:

Si=4
A ::= B | if C then 4 | if C then A4 else 4
B:=D=C

C:=ifCthenCelse C| D

Hint: You may find it necessary to delete or replace some construct
in order to allow for one-symbol top-down parsing to be applicable.

Given the following syntax, consider the problem of top-down parsing:

S =4

A ::= B+A| DC
B::= D | DB
D::= x| (C)
C:i= +x| —x

How many symbols do you have to look ahead at most in order to parse
sentences according to this syntax?

Transform the description of PL/0 (Fig. 5.4) into an equivalent set of BNF-
productions.

Write a program that determines the sets of initial and follow-symbols
L(S) and F(S) for each non-terminal symbol S in a given set of productions.

Hint: Use part of Program 5.3 to construct an internal representation
of the syntax in the form of a data structure. Then operate on this linked
data structure.

Extend the PL/0 language and its compiler by the following features:
(a) A conditional statement of the form

{statement) ::= if {condition) then {statement) else {statement)
(b) A repetitive statement of the form
{statement) ::= repeat (statement) {; (statement >} until {condition)

Are there any particular difficulties that might cause a change of form or
interpretation of the given PL/0 features? You should not introduce any
additional instructions in the repertoire of the PL/0 machine.

Extend the PL/0 language and compiler by introducing procedure param-
eters. Consider two possible solutions and chose one of them for your
realization.

(@) Value parameters. The actual parameters in the call are expressions
whose values are assigned to local variables represented by the formal
parameters specified in the procedure heading.

(b) Variable parameters. The actual parameters are variables. Upon a call,
they are substituted in place of the formal parameters. Variable param-
eters are implemented by passing the address of the actual parameter,
storing it in the location denoted by the formal parameters. The actual
parameters are then accessed indirectly via the transmitted address.

CHAP. 5 REFERENCES 349

5.9.

5.10.

5.11.

5-4.

5-5.

5-6.

Hence, variable parameters provide access to variables defined outside
the procedures, and the rules of scope may therefore be changed as
follows: In every procedure only local variables may be accessed directly;
non-local variables are accessible exclusively via parameters.

Extend the PL/0 language and compiler by introducing arrays of variables.
Assume that the range of indices of an array variable a is indicated in its
declaration as

var a(low : high)

Modify the PL/0 compiler to generate code for your available computer.

Hint: Generate symbolic assembly code in order to avoid problems with
loader conventions. In a first step avoid trying to optimize code, for example,
with respect to register usage. Possible optimizations should be incorporated
in a fourth refinement step of the compiler.

Extend Program 5.5 into a program called “prettyprint.” The purpose of
this program is to read PL/0-texts and print them in a layout which naturally
reflects the textual structure by appropriate line separation and indentation.
First define accurate line separation and indentation rules based on the
syntactic structure of PL/0; then implement them by superimposing write
statements onto Program 5.5. (Write statements must be removed from the
scanner, of course.)

REFERENCES

AMMANN, U., “The Method of Structured Programming Applied to the
Development of a Compiler,” International Computing Symposium 1973, A.
Giinther et al. eds., (Amsterdam: North-Holland Publishing Co., 1974), pp.
93-99.

CoHEN, D. J. and GotLIes, C. C., “A List Structure Form of Grammars for
Syntactic Analysis,” Comp. Surveys, 2, No. 1 (1970), 65-82.

FLoyp, R. W., “The Syntax of Programming Languages—A Survey,” IEEE
Trans., EC-13 (1964), 346-53.

GrIes, D., Compiler Construction for Digital Computers (New York: Wiley,
1971).

KnutH, D. E., “Top-down Syntax Analysis,” Acta Informatica, 1, No. 2
(1971), 79-110.

Lewis, P. M. and STEARNS, R. E., “Syntax-directed Transduction,” J. ACM,
15, No. 3 (1968), 465-88.

NAUR, P., ed., “Report on the Algorithmic Language ALGOL 60,” ACM,
6, No. 1 (1963), 1-17.

SCHORRE, D. V., “META 11, A Syntax-oriented Compiler Writing Language,”
Proc. ACM Natl. Conf., 19, (1964), D 1.3.1-11.

WIRTH, N., “The Design of a PASCAL Compiler,” Software-Practice and
Experience, 1, No. 4 (1971), 309-33.

A THE ASCHI CHARACTER SET

X
y 0 1 2 3 4 5 6 7
0 nul dle 0 @ P N p
1 soh dcel ! 1 A Q a q
2 stx dc2 ” 2 B R b r
3 etx dc3 # 3 C S c s
4 eot dc4 $ 4 D T d t
S enq nak % 5 E U e u
6 ack syn & 6 F \Y f v
7 bel etb ! 7 G w g w
8 bs can (8 H X h X
9 ht em) 9 [Y i y
10 If sub * : J z j z
11 vt esc + ; K [k {
12 ff fs , < L AN 1 |
13 cr gs - = M 1 m }
14 S0 rs . > N 1 n ~
15 si us / ? (o] . o del

The ordinal number of a character ch is computed from its coordinates in the table as
ord(ch) = 16xx + y

The characters with ordinal numbers 0 through 31 and 127 are so-called control characters
used for data transmission and device control. The character with ordinal number 32 is
the blank.

351

B PASCAL SYNTAX DIAGRAMS

Identifier
(letter }

—

Unsigned integer

i‘ digit i

Unsigned number

—! unsigned integer ‘ l' ° H unsigned integer

Unsigned constant

~ constant identifier

N1 unsigned number }—mo+«—

- (o) /
)

character) O J

Constant
constant identifier

JaO "\
O G

353

Variable

variable identifier
Y

field identifier [expression | @)
% field identifier |

N () J
>

Factor
~ unsigned constant e
N variable =
N———| function identifier | expression |
W
N @ expression @
N @ factor —

O o

expression 1 O expression

()
N

Term

—>| factor

00990

354

Simple expression

L

L

Expression

term

L term

—{ simple expression ~

5

Parameter list

simple expression

I

N

identifier

O
| 1

type identifier

procedure

identifier

355

Simple type

type identifier

R 4
N m identifier m y
N
“—| constant Q constant ——
Type
~ simple type 7
N m type identifier ———
U
set /o.f\- simple type }—]
() N4
L» field list G\d\ J
_/
Field list m
< identifier : m type f (

case

identifier

ol

type identifier

constant

()
L/

356

9

field list

-0

unsigned integer

>

3

variable

Statement

function identifier

O

[

procedure identifier

e

:

>{ expression

expression

nOx

procedure identifier

{\ begin } : t

-(0-

expression

expression

statemen
_>
™ a

N

(end } =

Y,

statement statement |

constant

statement

expression

statement

O

statement

variable identifier

expression

expression

‘ C» expression -> statement —]

@ variable @ statement ————————]
N unsigned integer —
- J

357

Block
f——ﬂ label } »| unsigned integer

_J

O

identifier

type

L-» | identifier 4@—> constant

O,

\—> identifier : type

5

O

/-;\ block m
4 O/ O/

‘ identifier parameter list %

\CfunctionD—> identifier (>-{ parameter list a@—» type identifier

@ statement end

Program

(program identifier (identifier @»@» block »Q

358

SUBJECT INDEX

A

ALGOL 60, 3, 11

ASCII, 9, 42

AVL-tree. 215, 264
Abstraction, 1

Address, 29
Adelson-Velskii, G.M., 215
alfa (type), 31

Ancestor, 191

Array selector, 12

B
B-tree, 246
BB-tree, 257

Backtracking, 142, 183
Backus-Naur-Form (BNF), 281
Balance (of tree), 215
Balance factor, 218
Balanced merging, 88, 99
Base type, 11, 23

Bayer, R., 245, 257, 258
Binary B-tree, 257

Binary insertion sort, 61
Binary search, 14, 54
Binary tree, 193

Boolean, 8

Branch and bound, 159
Bubblesort, 66

(o

Cardinality, S5, 7, 13, 16, 24
Cartesian product, 16
Cascade merge sort, 123
Case statement, 22
Centroid, 231

char, 9

Characteristic function, 33
chr (x), 10, 15

Cluster, 267

Collision, 265
Concatenation, 35
Concordance, 174
Constructor, 6, 12, 17
Context dependence, 313
Context free, 282

Context sensitive, 282
Control character, 42, 350
Coroutine, 119

Cross reference index, 206

Dependence diagram, 313
Descendant, 191

Dijkstra, E. W., x

Direct access file, 40

Direct chaining, 266

Distribution of runs, 93, 109, 116

359

360

div, 8

Don’t panic rule, 321
Dummy run, 108
Dynamic allocation, 166
Dynamic link, 332

Enumeration, S

eof (f), 38

eoln (f), 43

Euler, L., xv, 65, 214, 272
Exchange sort, 65
Expression, 163, 194
Extensible language, 303
External path length, 192
External sorting, 57

F

FORTRAN, 11, 128
Factorial, 126, 128
Fibonacci number, 107, 129, 130
Fibonacci tree, 127, 216
File editing, 49

File operator, 37

File structure, 39

first (x), 35

Fixup, 335

Floyd, R.W., 73
Follow-symbol, 286

For statement, 14

G

Gauss, C.F., 143

get (), 38

Gilstad, R.L., 105
Goal-oriented parsing, 288
Gotlieb, C.C., 231

H

Harmonic number, 64, 214, 272
Hash function, 266

SUBJECT INDEX

Hashing, 266

Heap, (17

Heapsort, 68

Hedge tree, 261

Hilbert curve, 131

Hilbert, D., 131

Hoare, C.A.R., x, 76, 82, 83
Homogeneous structure, 11
Hu, T.C., 231

I

1SO, 9, 42

Index type, 11
Indexed file, 40

Infix notation, 199
Inorder traversal, 199
input, 42

Insertion sort, 60
integer, 8

Internal path length, 191
Internal sorting, S7
Interpreter, 331

K

Key transformation, 265

Keyword rule, 320

Knuth, D.E., 59, 64, 68, 70, 109,
229, 257

L

Landis, E.M., 215
Language, 282
Latency time, 41
Leaf, 191
Lexicographic tree, 206
Linear probing, 267, 273
List, 171
deletion, 172
generation, 171
insertion, 172, 175
search, 174, 175
traversal, 173

SUBJECT INDEX

Load factor, 273
Locality, 307
Lookahead, 283
Loop invariant, 14

M

Matrix, 14
McCreight, E., 257
McVitie, D.G., 153
Median, 82
Mergesort, 87
Meta-language, 299
Meta-symbol, 281
mod, 8

Multiway tree, 242

N

Natural merging, 92
new (p), 167

nil, 168

Nonterminal symbol, 281
Null string problem, 286

o

Offset, 32

Open addressing, 267
Optimal tree, 228
ord (x), 10, 15
Ordered list, 176
output, 42

Overflow area, 267

P

PASCAL, xi, xiv, 3, 4, S, 44, 85, 307
PL/0 language, 307

PL/0 machine, 331

pack, 32

Packing, 31

Padding, 30

Page balancing, 251

361

Page merging, 251
Page splitting, 247
Partial order, 182, 183
Partition, 77, 82
Pass, 88, 93
Perfect balance, 195
Phase, 88, 93
Pointer (type), 166
Polyphasesort, 104
Postfix notation, 199
Postorder traversal, 199
Powerset, 23
Prefix notation, 199
Preorder traversal, 199
Production, 282
Program schema, 39, 43, 127, 142
Programming language, xiv, 2, 307
Programs:
Array search, 13
B-tree search, insertion, and
deletion, 252-57
Balanced mergesort, 102-4
Balanced tree deletion, 223-25
Balanced tree search and
insertion, 220-21
Binary insertion sort, 62
Binary search, 14, 54
Bubblesort, 66
Cross reference generator, 206-8
Cross reference generator (hash
table), 269-71
Distribution of runs, 119-120
Eight queens, 145-47
File editor, 50-52
Find (median), 84
Find and display optimal search
tree, 238-42
Heapsort, 75
Hilbert curves, 132-33
Knight’s tour, 140
List generation, 171
List traversal, 173
Natural mergesort, 97-98

Programs (cont.):

Optimal selection, 157-58

PL/0 compiler, 337-47

PL/0 parser, 314-19

PL/0 parser with error recovery,
326-29

PL/0 sample programs, 310-11

Parser, 294

Parser of language, 301

Partition, 77

Perfectly balanced tree, 196

Polyphase sort, 113-16

Powers of 2, 15

Quickshort (non-rec.), 80

Quicksort (recursive), 79

Read file, 39

Read text, 43

Readreal, 45-47

Scanner, 26

School time table, 27-29

Shakersort, 67

Shellsort, 70

Sierpinski curves, 136-37

Sift, 73

Stable marriages, 152-53

Straight insertion sort, 61

Straight list search and insertion,
175-81

Straight mergesort, 91

Straight selection sort, 64

Symmetric binary B-tree search
and insertion, 263-64

Table-driven parser, 298

Topological sort, 188-89

Translator of language, 304-7

Tree deletion, 211

Tree search, 200-201

Tree search and insertion,
203-4

Tree search and insertion
(non-rec.), 205

Tree traversal, 199

Write file, 39

Write text, 43

Writereal, 47-49
put (), 37

Q

Quadratic probing, 268
Queue, 171
Quicksort, 76

Random-access, 11
Re-organizing list, 180
read, 38

readln, 43

real, 8

Record discriminator, 20
Record selector, 17
Record variant, 20, 21
Recursion, 125
Recursion scheme, 131
Recursive data type, 163
Rehashing, 278
Replacement rule, 281
Representation of data, 2
reset (1), 37

rest (x), 35

Restrictive Rules, 285, 286
rewrite (f), 37

Run, 92

S

SBB-tree, 260

Scalar type, S, 7
Scanner, 24, 300

Search tree, 200
Segmented file, 40
Selection sort, 63
Selective updating, 13, 169
Selector, 6, 12, 17
Semantics, 281

Sentinel, 13, 61, 175, 200
Sequence, 35

Set difference, 23

Set intersection, 23

362

SUBJECT INDEX

Set operation, 23

Set structure, 23

Set union, 23

Shakersort, 66

Shared data, 166

Shell, D.L., 68

Shellsort, 68

Sierpinski curve, 134
Single phase merging, 88
Singleton sequence, 35
Singleton set, 24

Stable sorting, S8

Stage, 88

Standard types, S

Start symbols, 281

Static link, 333

Stepwise enrichment, 303
Stepwise refinement, 49, 303
Stopping symbol, 321
Straight merging, 87
String, 92

Structuring method, 5
Symmetric binary B-tree, 260
Syntax, 281

Syntax analysis, 283
Syntaxgraph, 288

T

2-3 tree, 257

Table-driven parsing, 288, 295
Tag field, 20

Terminal symbol, 281
Termination, 127

Top-down parsing, 283

363

Topological sort, 182
Tree, 189
deletion, 210, 222, 250
depth, 191
degree, 191
height, 191
insertion, 202, 216, 248, 258, 260
level, 191
search, 202, 216, 248, 258, 260
traversal, 198
Tree page, 245
Tree-hashing, 278
Tucker, A.C., 231
Type (of data), 4
Type declaration, 4, 7, 10, 11, 16, 21,
36, 167

v

unpack, 32

v

Variant record structure, 20
Vocabulary, 280

w

Walker, W.A., 231
Weighted path length, 226
Williams, J., 72

Wilson, L.B., 153

Word, 29, 30

Wordsize, 29

write, 38

writeln, 43

INDEX OF PROGRAMS

Array search (1.15), (1.16), 13
Binary search (1.17), 14, 54
Powers of 2 (Prog. 1.1), 15
Scanner (Prog. 1.2), 26
School time table (1.28)-{1.30),

27, 29
Write file (1.52), 39
Read file (1.53), 39
Write text (1.54), 43
Read text (1.55), 43
Readreal (Prog. 1.3), 45-47
Writereal (Prog. 1.4), 47-49
File editor (1.57)-(1.61), 50-52
Straight insertion sort (Prog. 2.1), 61
Binary insertion sort (Prog. 2.2), 62
Straight selection sort (Prog. 2.3), 64
Bubblesort (Prog. 2.4), 66
Shakersort (Prog. 2.5), 67
Shellsort (Prog. 2.6), 70
Sift (Prog. 2.7), 73
Heapsort (Prog. 2.8), 75
Partition (Prog. 2.9), 77
Quicksort (recursive)(Prog. 2.10), 79
Quicksort (non-rec.) (Prog. 2.11), 80
Find (median) (Prog. 2.12), 84
Straight mergesort (Prog. 2.13),

91

365

Natural mergesort (Prog. 2.14),
97-98

Balanced mergesort (Prog. 2.15),
102-4

Polyphase sort (Prog. 2.16), 113-16

Distribution of runs (Prog. 2.17),
119-20

Hilbert curves (Prog. 3.1), 132-33

Sierpinski curves (Prog. 3.2), 136-37

Knight’s tour (Prog. 3.3), 140

Eight queens (Prog. 3.4, Prog. 3.5),
145-47

Stable marriages (Prog. 3.6), 152-53

Optimal selection (Prog. 3.7), 157-58

List generation (4.13), 171

List traversal (4.17), 173

Straight list search and insertion
(Prog. 4.1) (4.21)-(4.26), 175-81

Topological sort (Prog. 4.2), 188-89

Perfectly balanced tree (Prog. 4.3),
196

Tree traversal (4.43)-(4.45), 199

Tree search (4.46), (4.47), 200-201

Tree search and insertion (Prog.
4.4), 203-4

Tree search and insertion (non-rec.)
(4.51), 205

366

Cross reference generator (Prog.
4.5), 206-8

Tree deletion (4.52), 211

Balanced tree search and insertion
(4.63), 220-21

Balanced tree deletion (4.64), 223-25

Find and display optimal search tree
(Prog. 4.6), 238-42

B-tree search, insertion, and deletion
(Prog. 4.7), 252-57

Symmetric binary B-tree search and
insertion (4.87), 263-64

Cross reference generator (hash

INDEX OF PROGRAMS

table) (Prog. 4.8), 269-71
Parser (Prog. 5.1), 294
Table-driven parser (5.11), 298
Parser of language (5.13), (Prog.

5.2), 301
Translator of language (5.13), (Prog.

53), 304-7
PL/0 sample programs (5.14)-(5.16),

310-11
PL/0 parser (Prog. 5.4), 314-19
PL/0 parser with error recovery

(Prog. 5.5), 326-29
PL/0 compiler (Prog. 5.6), 337-47

